cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229012 T(n,k) = number of arrays of median of three adjacent elements of some length n+2 0..k array, with no adjacent equal elements in the latter.

Original entry on oeis.org

2, 3, 2, 4, 7, 2, 5, 14, 15, 2, 6, 23, 46, 31, 2, 7, 34, 101, 130, 57, 2, 8, 47, 186, 359, 332, 105, 2, 9, 62, 307, 794, 1145, 830, 193, 2, 10, 79, 470, 1527, 3002, 3527, 2054, 353, 2, 11, 98, 681, 2666, 6635, 10860, 10735, 5108, 653, 2, 12, 119, 946, 4335, 13040, 27379
Offset: 1

Views

Author

R. H. Hardin, Sep 10 2013

Keywords

Comments

Table starts
.2...3.....4......5......6.......7.......8........9.......10.......11........12
.2...7....14.....23.....34......47......62.......79.......98......119.......142
.2..15....46....101....186.....307.....470......681......946.....1271......1662
.2..31...130....359....794....1527....2666.....4335.....6674.....9839.....14002
.2..57...332...1145...3002....6635...13040....23515....39698....63605.....97668
.2.105...830...3527..10860...27379...60180...119653...220318...381749....629586
.2.193..2054..10735..38768..111311..273124...597477..1197190..2238005...3954490
.2.353..5108..32907.139456..456029.1248872..3004839..6549040.13200731..24974126
.2.653.12790.101635.506236.1888383.5780144.15315095.36345246.79063593.160271154

Examples

			Some solutions for n=4 k=4
..1....1....0....3....4....1....2....3....2....3....3....1....1....0....2....2
..4....1....1....1....3....0....2....1....0....0....2....3....4....4....0....1
..0....1....3....3....3....2....0....1....4....2....2....4....1....1....3....3
..3....2....3....1....0....0....1....3....3....1....0....3....4....4....2....3
		

Crossrefs

Row 2 is A008865(n+1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: [order 13]
k=3: [order 27]
k=4: [order 46]
k=5: [order 69]
k=6: [order 95] for n>97
Empirical for row n:
n=1: a(n) = 1*n + 1
n=2: a(n) = 1*n^2 + 2*n - 1
n=3: a(n) = 1*n^3 + 3*n^2 - 3*n + 1
n=4: a(n) = (2/3)*n^4 + (10/3)*n^3 - (5/3)*n^2 + (2/3)*n - 1
n=5: [polynomial of degree 5]
n=6: [polynomial of degree 6]
n=7: [polynomial of degree 7]