A229016 Number of arrays of median of three adjacent elements of some length 8 0..n array, with no adjacent equal elements in the latter.
2, 105, 830, 3527, 10860, 27379, 60180, 119653, 220318, 381749, 629586, 996635, 1524056, 2262639, 3274168, 4632873, 6426970, 8760289, 11753990, 15548367, 20304740, 26207435, 33465852, 42316621, 53025846, 65891437, 81245530, 99456995
Offset: 1
Keywords
Examples
Some solutions for n=4: ..3....2....3....1....1....0....1....1....1....0....2....4....3....1....1....1 ..3....2....3....3....1....1....1....0....2....1....4....2....0....3....2....1 ..4....0....2....3....1....3....3....3....2....2....2....2....4....3....2....0 ..1....4....3....3....1....3....0....3....2....2....4....1....2....3....1....1 ..3....0....3....4....0....4....3....3....2....4....1....2....2....1....0....0 ..0....1....3....0....2....2....3....1....0....3....3....1....1....3....1....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..178
Crossrefs
Row 6 of A229012.
Formula
Empirical: a(n) = (11/90)*n^6 + (11/5)*n^5 + (167/36)*n^4 - (43/6)*n^3 + (583/180)*n^2 - (61/30)*n + 1.
Conjectures from Colin Barker, Sep 14 2018: (Start)
G.f.: x*(2 + 91*x + 137*x^2 - 148*x^3 - 4*x^4 + 9*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)