cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229016 Number of arrays of median of three adjacent elements of some length 8 0..n array, with no adjacent equal elements in the latter.

Original entry on oeis.org

2, 105, 830, 3527, 10860, 27379, 60180, 119653, 220318, 381749, 629586, 996635, 1524056, 2262639, 3274168, 4632873, 6426970, 8760289, 11753990, 15548367, 20304740, 26207435, 33465852, 42316621, 53025846, 65891437, 81245530, 99456995
Offset: 1

Views

Author

R. H. Hardin, Sep 10 2013

Keywords

Examples

			Some solutions for n=4:
..3....2....3....1....1....0....1....1....1....0....2....4....3....1....1....1
..3....2....3....3....1....1....1....0....2....1....4....2....0....3....2....1
..4....0....2....3....1....3....3....3....2....2....2....2....4....3....2....0
..1....4....3....3....1....3....0....3....2....2....4....1....2....3....1....1
..3....0....3....4....0....4....3....3....2....4....1....2....2....1....0....0
..0....1....3....0....2....2....3....1....0....3....3....1....1....3....1....4
		

Crossrefs

Row 6 of A229012.

Formula

Empirical: a(n) = (11/90)*n^6 + (11/5)*n^5 + (167/36)*n^4 - (43/6)*n^3 + (583/180)*n^2 - (61/30)*n + 1.
Conjectures from Colin Barker, Sep 14 2018: (Start)
G.f.: x*(2 + 91*x + 137*x^2 - 148*x^3 - 4*x^4 + 9*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)