cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229018 Primes of the form (3*x + 2)*2^x - 1.

This page as a plain text file.
%I A229018 #19 Sep 20 2013 20:04:01
%S A229018 31,223,1279,3276799,14680063,420906795007,2357352929951743,
%T A229018 32326824857489154029020587706017980088319,
%U A229018 173918694842377447266238495093237679339055972614143
%N A229018 Primes of the form (3*x + 2)*2^x - 1.
%C A229018 Also primes of the form W(n) + W(n+1) + 1 where W(n) and W(n+1) are  consecutive Woodall numbers. The n-th Woodall number = n*2^n-1.
%H A229018 K. D. Bajpai, <a href="/A229018/b229018.txt">Table of n, a(n) for n = 1..19</a>
%H A229018 Wikipedia, <a href="http://en.wikipedia.org/wiki/Woodall_number">Woodall number</a>
%e A229018 a(2) = 223:   for x=4: R= x*2^x-1 = 4*2^4-1 = 63 and S=  (x+1)*2^(x+1)-1 = 5*2^5-1 = 159. R+S+1 = 63+159+1 = 223 which is prime.
%p A229018 KD:= proc() local a,b,d;  a:= x*2^x-1;  b:=(x+1)*2^(x+1)-1;  d:=a+b+1;  if isprime(d) then   RETURN(d): fi; end: seq(KD(),x=1..1000);
%t A229018 Select[Table[(3*x + 2)*2^x - 1, {x, 200}], PrimeQ] (* _T. D. Noe_, Sep 20 2013 *)
%Y A229018 Cf. A003261, A072669.
%K A229018 nonn
%O A229018 1,1
%A A229018 _K. D. Bajpai_, Sep 11 2013