cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229019 Minimal position at which the sequence defined in the same way as A159559 but with initial term prime(n) merges with A159559; a(n)=0 if there is no such position.

This page as a plain text file.
%I A229019 #24 Sep 17 2016 10:12:00
%S A229019 2,11,47,47,47,683,683,683,683,683,683,683,683,683,683,683,683,1117,
%T A229019 1117,1117,1117,1117,1117,1117,1117,1117,1117,1117,6257,6257,6257,
%U A229019 6257,6257,6257,6257,6257,390703,390703,390703,390703,390703,390703,390703,390703
%N A229019 Minimal position at which the sequence defined in the same way as A159559 but with initial term prime(n) merges with A159559; a(n)=0 if there is no such position.
%C A229019 All positive terms of the sequence are prime.
%C A229019 Conjecture: all terms are positive.
%H A229019 V. Shevelev, <a href="http://arxiv.org/abs/0904.2101">Several results on sequences which are similar to the positive integers</a>, arXiv:0904.2101 [math.NT], 2009.
%e A229019 For n>=2, denote by A_n the sequence defined in the same way as A159559 but with initial term A_n(2)=prime(n). In case n=2 A_2(2)=3, hence A_2 = A159559, and so a(2)=2. Suppose n=3. Then A_3(2)=5 and by the definition of A159559 we have A_3(3)=7, A_3(4)=8, A_3(5)=11, A_3(6)=12, A_3(7)=13, A_3(8)=14, A_3(9)=15, A_3(10)=16, A_3(11)=17. Since A159559(11) is also 17, then, beginning with 11, A_3 merges with A159559 and a(3)=11. - _Vladimir Shevelev_, Sep 11 2016.
%p A229019 b:= proc(n, p) option remember; local m;
%p A229019       if n=2 then p
%p A229019     else for m from b(n-1,p)+1 while isprime(m) xor isprime(n)
%p A229019          do od; m
%p A229019       fi
%p A229019     end:
%p A229019 a:= proc(n) option remember; local k;
%p A229019       for k from 2 while b(k, 3)<>b(k, ithprime(n)) do od; k
%p A229019     end:
%p A229019 seq(a(n), n=2..20);  # _Alois P. Heinz_, Sep 15 2013
%t A229019 f[n_, r_] := Block[{a}, a[2] = n; a[x_] := a[x] = If[PrimeQ@ x, NextPrime@ a[x - 1], NestWhile[# + 1 &, a[x - 1] + 1, PrimeQ@ # &]]; Map[a, Range[2, r]]]; nn = 10^4; t = f[3, nn]; Table[1 + First@ Flatten@ Position[BitXor[t, f[Prime@ n, nn]], 0], {n, 2, 37}] (* _Michael De Vlieger_, Sep 13 2016, after _Peter J. C. Moses_ at A159559 *)
%Y A229019 Cf. A159559, A159698.
%K A229019 nonn
%O A229019 2,1
%A A229019 _Vladimir Shevelev_, Sep 11 2013
%E A229019 More terms from _Alois P. Heinz_, Sep 15 2013