This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229024 #17 May 17 2014 04:02:36 %S A229024 0,0,0,3,3,9,27,18,0,0,9,9,0 %N A229024 a(n) is the minimum distance to n! for the sum-of-digits of any factorial. %C A229024 One could talk of signed integers here: 0, 0, 0, +3, -3, +9, +27, -18, 0, 0, +9, +9, depending on whether the minimum sum-of-digits finds itself above (plus) or below (minus) n!. The problem with so doing is that there might exist some n for which a nonzero minimum distance is both plus and minus. %C A229024 Zeros indicate where there are solutions in A228311. %C A229024 List of solutions: %C A229024 1! 0 (0, 1) %C A229024 2! 0 (2) %C A229024 3! 0 (3, 4) %C A229024 4! +3 (9, 10, 12, 13) %C A229024 5! -3 (30) %C A229024 6! +9 (116) %C A229024 7! +27 (541, 554) %C A229024 8! -18 (3154, 3186, 3219) %C A229024 9! 0 (21966) %C A229024 10! 0 (176755) %C A229024 11! +9 (1607130) %C A229024 12! +9 (16305323) %C A229024 13! 0 (182624820) %H A229024 Hans Havermann, <a href="http://chesswanks.com/num/a229024(11).txt">Determination of a(11)</a> %H A229024 Hans Havermann, <a href="http://chesswanks.com/num/a229024(12).txt">Determination of a(12)</a> %H A229024 Hans Havermann, <a href="http://chesswanks.com/num/a229024(13).txt">Determination of a(13)</a> %e A229024 The minimum distance to 4! is 3, given by the sum of digits for 9!, 10!, 12!, or 13!. %e A229024 The minimum distance to 5! is also 3, given by the sum of digits of 30!. %Y A229024 Cf. A004152, A228311. %K A229024 nonn,base,hard %O A229024 1,4 %A A229024 _Hans Havermann_, Sep 11 2013 %E A229024 a(13) from _Hans Havermann_, Nov 04 2013