cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229026 Expansion of 1/((1-x)*((1-5*x)^2)*(1-8*x)).

This page as a plain text file.
%I A229026 #16 Feb 24 2025 02:18:03
%S A229026 1,19,238,2490,23631,211509,1823908,15348100,127057261,1040261799,
%T A229026 8453319978,68343722910,550640774491,4426107030889,35521389816448,
%U A229026 284771933350920,2281370275767321,18267889925254779,146232526369201318,1170331087647336130,9365122293936867751
%N A229026 Expansion of 1/((1-x)*((1-5*x)^2)*(1-8*x)).
%C A229026 This sequence was chosen to illustrate a method of solution.
%H A229026 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (19,-123,305,-200).
%F A229026 a(n) = (2*8^(n+4) - (84*n+287)*5^(n+2) - 9)/1008.
%F A229026 In general, for the expansion of 1/((1-t*x)*((1-s*x)^2)*(1-r*x)) with r > s > t, we have the formula: a(n) = (K*r^(n+3) + L*s^(n+3) + M*s^(n+2) + N*t^(n+3))/D, where K, L, M, N, D have the following values:
%F A229026   K = (s-t)^2;
%F A229026   L = (r-t)*(r-2*s+t);
%F A229026   M = -(r-s)*(r-t)*(s-t)*(n+3);
%F A229026   N = -(r-s)^2;
%F A229026   D = (r-t)*((s-t)^2)*((r-s)^2).
%F A229026 Directly using formula we get: a(n) = (16*8^(n+3) - 7*5^(n+3) - 84*(n+3)*5^(n+2) - 9)/1008. After transformation we obtain previous formula.
%K A229026 nonn,easy
%O A229026 0,2
%A A229026 _Yahia Kahloune_, Sep 18 2013