A229031 Number of 5-colorings of the strong product of the complete graph K2 and the cycle graph Cn.
120, 0, 2400, 3840, 63360, 215040, 1943040, 9031680, 64665600, 346030080, 2243911680, 12792299520, 79437987840, 465890181120, 2838290104320, 16857940623360, 101834835886080, 608260231004160, 3660556491816960, 21919358464819200, 131692072607416320, 789448748118835200, 4739507238312345600, 28425784430470103040
Offset: 2
Examples
For n = 2, the graph is the complete graph K4, which has a(4) = 120 different 5-colorings corresponding to ordered 4-subsets of {1,2,3,4,5}. For n = 3, the graph is the complete graph K6, which cannot be 5-colored, so a(3) = 0. Equivalently, there are no closed walks of length 3 on the Petersen graph.
Links
- Indranil Ghosh, Table of n, a(n) for n = 2..1000
- Wolfram MathWorld, Graph Strong Product
- Index entries for linear recurrences with constant coefficients, signature (4,20,-48).
Programs
-
Mathematica
Table[2^n(3^n+4(-2)^n+5),{n,2,25}] LinearRecurrence[{4,20,-48},{120,0,2400},24] (* or *) Drop[CoefficientList[Series[-120*x^2*(4*x - 1) / ((2*x - 1) * (4*x + 1) * (6*x - 1)), {x, 0, 25}], x], 2] (* Indranil Ghosh, Mar 03 2017 *)
-
PARI
a(n) = (2^n) * (3^n + 4*(-2)^n + 5) \\ Indranil Ghosh, Mar 03 2017
-
Python
def A229031(n) : return (2**n) * (3**n + 4*(-2)**n +5) # Indranil Ghosh, Mar 03 2017
Formula
a(n) = 6^n + 4*(-4)^n + 5*2^n.
a(n) = 10 * 2^n * A091000(n).
a(n) = 4*a(n-1)+20*a(n-2)-48*a(n-3). G.f.: -120*x^2*(4*x-1) / ((2*x-1)*(4*x+1)*(6*x-1)). - Colin Barker, Oct 20 2013
Comments