This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229041 #12 Apr 20 2014 22:29:15 %S A229041 1,1,-1,1,-7,-49,-1191,-31569,-1051695,-41520593,-1896894223, %T A229041 -98362962257,-5705059841823,-365846227736001,-25696840682622175, %U A229041 -1961769357361345473,-161728572333727674687,-14318505129615014956737,-1354916705432679538845759,-136467389971873491004759617 %N A229041 G.f. A(x) satisfies: [x^n] A(x)^(n^2-n+1) = 0 for n>=2. %C A229041 G.f. A(x) satisfies: %C A229041 (1) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A185072. %C A229041 (2) A(x) = F(x/A(x)) where F(x) = A(x*F(x)) is the g.f. of A229044. %e A229041 G.f.: A(x) = 1 + x - x^2 + x^3 - 7*x^4 - 49*x^5 - 1191*x^6 - 31569*x^7 -... %e A229041 Coefficients of x^k in the powers A(x)^(n^2-n+1) of g.f. A(x) begin: %e A229041 n=1: [1, 1, -1, 1, -7, -49, -1191, -31569, -1051695, ...]; %e A229041 n=2: [1, 3, 0, -2, -15, -189, -3850, -101700, -3340845, ...]; %e A229041 n=3: [1, 7, 14, 0, -56, -588, -10808, -273972, -8760325, ...]; %e A229041 n=4: [1,13, 65, 143, 0, -1742, -27534, -638690, -19496334, ...]; %e A229041 n=5: [1,21, 189, 931, 2478, 0, -67312, -1444608, -40653711, ...]; %e A229041 n=6: [1,31, 434, 3596, 19158, 62062, 0, -3116120, -84939504, ...]; %e A229041 n=7: [1,43, 860,10578, 88795, 526449, 2045854, 0,-167991196, ...]; %e A229041 n=8: [1,57,1539,26125,311619,2754297,18283187, 83718693, 0, ...]; %e A229041 ... %e A229041 where the coefficients of x^n in A(x)^(n^2-n+1) all equal zero for n>=2. %o A229041 (PARI) {a(n)=local(A=[1,1]);for(k=1,n,A=concat(A,0);A[#A]=-polcoeff((Ser(A) +O(x^(k+2)))^(k^2+k+1)/(k^2+k+1),k+1));A[n+1]} %o A229041 for(n=0,30,print1(a(n),", ")) %Y A229041 Cf. A185072, A229044, A230218, A171791. %K A229041 sign %O A229041 0,5 %A A229041 _Paul D. Hanna_, Sep 14 2013