A229083 Numbers k such that the distance between the k-th triangular number and the nearest square is at most 1.
1, 2, 4, 5, 8, 15, 25, 32, 49, 90, 148, 189, 288, 527, 865, 1104, 1681, 3074, 5044, 6437, 9800, 17919, 29401, 37520, 57121, 104442, 171364, 218685, 332928, 608735, 998785, 1274592, 1940449, 3547970, 5821348, 7428869, 11309768, 20679087, 33929305, 43298624, 65918161
Offset: 1
Keywords
Examples
A000217(4) = 10 and 10 - 3^2 = 1 so 4 is in the sequence. A000217(5) = 15 and 4^2 - 15 = 1 so 5 is in the sequence. A000217(8) = 36 = 6^2 so 8 is in sequence.
Programs
-
PARI
for(n=1,10^8,for(i=-1,1,f=0;if(issquare(n*(n+1)/2+i),f=1;break));if(f,print1(n,",")))
Formula
G.f.: (x^7 - 2*x^6 + x^5 - 3*x^4 + x^3 + 2*x^2 + x + 1)/((1-2*x^2+x^4)*(1-2*x^2-x^4)*(1-x)) (conjectured).
Comments