This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229098 #21 Sep 16 2017 03:44:01 %S A229098 6,156,126,546,3750,7350,570,1176,14406,2046,3216,4740,1554,3354, %T A229098 43350,54150,6180,3924,17556,84966,3294,24174,106134,7446,126150, %U A229098 144150,28236,33174,21294,10374,6006,9264,16716,247254,252150,277350,282534,55944,75894,26676 %N A229098 Smallest area A of Heron triangles with sides (a, b, c) in arithmetic progression of the form b - d(n), b, b + d(n), where d(n) = A091998(n) = 12*n +- 1. %C A229098 a(1) = A011945(1). %C A229098 According to the reference, d(n) is congruent (mod 12) to 1 or -1. %C A229098 Let the sides be b - d, b, b + d where 1 <= d <= b. Then the semiperimeter s = 3b/2 and by Heron's formula, the area is A = b*sqrt(3*(b^2 - 4*d^2))/4. %C A229098 The following table gives the first values (d(n), a, b, c, A): %C A229098 +------+-----+-----+-----+-------+ %C A229098 | d(n) | a | b | c | A | %C A229098 +------+-----+-----+-----+-------+ %C A229098 | 1 | 3 | 4 | 5 | 6 | %C A229098 | 11 | 15 | 26 | 37 | 156 | %C A229098 | 13 | 15 | 28 | 41 | 126 | %C A229098 | 23 | 29 | 52 | 75 | 546 | %C A229098 | 25 | 75 | 100 | 125 | 3750 | %C A229098 | 35 | 105 | 140 | 175 | 7350 | %C A229098 | 37 | 39 | 76 | 113 | 570 | %C A229098 | 47 | 51 | 98 | 145 | 1176 | %C A229098 | 49 | 147 | 196 | 245 | 14406 | %H A229098 J. A. MacDougall, <a href="https://docserver.carma.newcastle.edu.au/id/eprint/814">Heron Triangles With Sides in Arithmetic Progression</a>, School of Mathematical and Physical Sciences, University of Newcastle, NSW, Australia 2308, February 2, 2005. %H A229098 Kival Ngaokrajang, <a href="/A229098/a229098.pdf">Illustration of initial terms</a> %e A229098 a(2) = 156 is in the sequence because d(2) = A091998(2) = 11 and (a, b, c) = (15, 26, 37) => the semiperimeter is (15 + 26 + 37)/2 = 39, and A = sqrt(39*(39-15)*(39-26)*(39-37)) = 156. %p A229098 with(numtheory):u:=0:nn:=1000:lst:={1}:for k from 1 to 10 do:x:=12*k-1:y:=12*k+1:lst:=lst union {x} union {y}:od:for n from 1 to 20 do:ii:=0:d:=lst[n]:for b from 1 to nn while(ii=0)do:s:= b*sqrt(3*(b^2-4*d^2))/4:if s>0 and s=floor(s) then ii:=1:u:=u+1:printf ( "%d %d %d %d \n",u,d,b,s):else fi:od:od: %Y A229098 Cf. A011945, A091998, A188158. %K A229098 nonn %O A229098 1,1 %A A229098 _Michel Lagneau_, Sep 13 2013