This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229113 #6 Aug 16 2024 18:49:51 %S A229113 1,3,14,115,1474,26306,605538,17116241,574398861,22333212354, %T A229113 987660842174,48969675370286,2690888441513773,162333780684342177, %U A229113 10667116965172284025,758434434866124781819,58015602766701416940599,4750972163883049286678765,414721061026426313701858479 %N A229113 Row sums of triangle A166890. %C A229113 Triangle A166890 transforms diagonals in the table of coefficients of successive iterations of x*(1+x)^2 (cf. A166888). %e A229113 Triangle A166890 begins: %e A229113 1; %e A229113 2, 1; %e A229113 9, 4, 1; %e A229113 78, 30, 6, 1; %e A229113 1038, 364, 63, 8, 1; %e A229113 18968, 6233, 986, 108, 10, 1; %e A229113 443595, 139008, 20685, 2072, 165, 12, 1; %e A229113 12681960, 3833052, 545736, 51494, 3750, 234, 14, 1; ... %e A229113 of which the row sums form this sequence. %o A229113 (PARI) {a(n, k)=local(F=x, M, N, P, m=max(n, k), A166890); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, x+2*x^2+x^3+x*O(x^(m+2)))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, M[r, c]); P=matrix(m+1, m+1, r, c, M[r+1, c]); A166890=P~*(N~)^-1;sum(k=0,n,A166890[n+1, k+1])} %o A229113 for(n=0, 25, print1(a(n), ", ")) %Y A229113 Cf. A166890. %K A229113 nonn %O A229113 0,2 %A A229113 _Paul D. Hanna_, Sep 13 2013