This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229115 #13 Nov 02 2013 02:40:47 %S A229115 32,44,52,68,76,92,116,124,144,148,164,172,188,212,236,244,268,284, %T A229115 292,316,332,356,388,404,412,428,436,452,508,524,548,556,596,604,628, %U A229115 652,668,692,716,724,764,772,788,796,844,892,908,916,932,956,964,1004,1028 %N A229115 Numbers n such that sigma(n) mod n - antisigma(n) mod n = 14, where sigma(n) = A000203(n) = sum of divisor of n, antisigma(n) = A024816(n) = sum of non-divisors of n. %C A229115 Numbers n such that A229087(n) = A000203(n) mod n - A024816(n) mod n = A054024(n) - A229110(n) = 14. %C A229115 Value 14 has in sequence A229087(n) anomalous increased frequency. %C A229115 Subsequence of A229090 (numbers n such that sigma(n) mod n > antisigma(n) mod n). %H A229115 Jaroslav Krizek, <a href="/A229115/b229115.txt">Table of n, a(n) for n = 1..2761 (all terms < 10^5)</a> %e A229115 Number 32 is in sequence because sigma(32) mod 32 - antisigma(32) mod 32 = 63 mod 32 - 465 mod 32 = 31 - 17 = 14. %o A229115 (PARI) isok(n) = ((sigma(n) % n) - (n*(n+1)/2 - sigma(n)) % n) == 14; \\ _Michel Marcus_, Oct 31 2013 %Y A229115 Cf. A000203 (sigma(n)), A024816 (antisigma(n)), A229110 (antisigma(n) mod n), A054024 (sigma(n) mod n), A229090. %K A229115 nonn %O A229115 1,1 %A A229115 _Jaroslav Krizek_, Oct 24 2013