This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229125 #34 Jan 30 2025 17:22:07 %S A229125 2,3,5,7,8,11,12,13,17,18,19,20,23,27,28,29,31,32,37,41,43,44,45,47, %T A229125 48,50,52,53,59,61,63,67,68,71,72,73,75,76,79,80,83,89,92,97,98,99, %U A229125 101,103,107,108,109,112,113,116,117,124,125,127,128,131,137,139,147,148,149 %N A229125 Numbers of the form p * m^2, where p is prime and m > 0: union of A228056 and A000040. %C A229125 No term is the product of two other terms. %C A229125 Squares of terms and pairwise products of distinct terms form a subsequence of A028260. %C A229125 Numbers n such that A162642(n) = 1. - _Jason Kimberley_, Oct 10 2016 %C A229125 Numbers k such that A007913(k) is a prime number. - _Amiram Eldar_, Jul 27 2020 %H A229125 Chris Boyd, <a href="/A229125/b229125.txt">Table of n, a(n) for n = 1..10000</a> %H A229125 Eckford Cohen, <a href="https://doi.org/10.4064/aa-7-4-417-420">Arithmetical notes, IX. On the set of integers representable as a product of a prime and square</a>, Acta Arithmetica, Vol. 7 (1962), pp. 417-420. %F A229125 The number of terms not exceeding x is (Pi^2/6) * x/log(x) + O(x/(log(x))^2) (Cohen, 1962). - _Amiram Eldar_, Jul 27 2020 %t A229125 With[{nn=70},Take[Union[Flatten[Table[p*m^2,{p,Prime[Range[nn]]},{m,nn}]]], nn]] (* _Harvey P. Dale_, Dec 02 2014 *) %o A229125 (PARI) test(n)=isprime(core(n)) %o A229125 for(n=1,200,if(test(n), print1(n","))) %o A229125 (Python) %o A229125 from math import isqrt %o A229125 from sympy import primepi %o A229125 def A229125(n): %o A229125 def bisection(f,kmin=0,kmax=1): %o A229125 while f(kmax) > kmax: kmax <<= 1 %o A229125 kmin = kmax >> 1 %o A229125 while kmax-kmin > 1: %o A229125 kmid = kmax+kmin>>1 %o A229125 if f(kmid) <= kmid: %o A229125 kmax = kmid %o A229125 else: %o A229125 kmin = kmid %o A229125 return kmax %o A229125 def f(x): return n+x-sum(primepi(x//y**2) for y in range(1,isqrt(x)+1)) %o A229125 return bisection(f,n,n) # _Chai Wah Wu_, Jan 30 2025 %Y A229125 Subsequence of A026424. %Y A229125 Cf. A028260, A162642, A229153. %Y A229125 Cf. A007913, A013661. %Y A229125 Subsequences: A000040, A030078, A050997, A054753, A092759, A179643, A179665, A246551. %K A229125 nonn %O A229125 1,1 %A A229125 _Chris Boyd_, Sep 14 2013