This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229139 #13 Oct 11 2013 00:46:43 %S A229139 0,1,1,2,3,5,8,9,21,34,55,89,73,13,377,610,987,64,244,4155,4554,10946, %T A229139 2191,28657,15857,74957,34022,29811,50481,134104,832040,162589,387938, %U A229139 711703,1556305,6229800,4173137,4059539,1972951,51797450,4866315,165580141,46049477,202620393,348451533,181781990 %N A229139 Smallest m such that Fibonacci(2n-1) = m^2 + k^2. %C A229139 Every odd-indexed Fibonacci number (A000045) is a sum of two squares (see A124134). %C A229139 Which of the a(n) are not Fibonacci numbers? %e A229139 A000045(2*6-1) = 89 = 5^2 + 8^2 so a(6)=5. %e A229139 A000045(2*8-1) = 610 = 9^2 + 23^2 = 13^2 + 21^2, so a(8)=9. %o A229139 (PARI) for(n=1, 10^6, t=fibonacci(2*n-1);s=sqrtint(t);forstep(i=s,1,-1,if(issquare(t-i*i),print1(sqrtint(t-i*i), ",");break))) %o A229139 (Haskell) %o A229139 a229139 1 = 0 %o A229139 a229139 n = head $ %o A229139 dropWhile (== 0) $ map (a037213 . (t -) . (^ 2)) [s, s - 1 ..] %o A229139 where t = a000045 (2 * n - 1); s = a000196 t %o A229139 -- _Reinhard Zumkeller_, Oct 11 2013 %Y A229139 Cf. A000045. %Y A229139 Cf. A000196, A037213. %K A229139 nonn %O A229139 1,4 %A A229139 _Ralf Stephan_, Sep 15 2013