cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229141 Number of circular permutations i_1, ..., i_n of 1, ..., n such that all the n sums i_1^2+i_2, ..., i_{n-1}^2+i_n, i_n^2+i_1 are among those integers m with the Jacobi symbol (m/(2n+1)) equal to 1.

This page as a plain text file.
%I A229141 #14 Aug 04 2019 09:55:39
%S A229141 1,0,0,2,0,1,0,5,35,0
%N A229141 Number of circular permutations i_1, ..., i_n of 1, ..., n such that all the n sums i_1^2+i_2, ..., i_{n-1}^2+i_n, i_n^2+i_1 are among those integers m with the Jacobi symbol (m/(2n+1)) equal to 1.
%C A229141 Conjecture: a(n) > 0 if 2*n+1 is a prime greater than 11.
%C A229141 Zhi-Wei Sun also made the following conjectures:
%C A229141 (1) For any prime p = 2*n+1 > 11, there is a circular permutation i_1, ..., i_n of 1, ..., n such that all the n numbers i_1^2-i_2, i_2^2-i_3, ..., i_{n-1}^2-i_n, i_n^2-i_1 are quadratic residues modulo p.
%C A229141 (2)  Let p = 2*n+1 be an odd prime. If p > 13 (resp., p > 11), then there is a circular permutation i_1, ..., i_n of 1, ..., n such that all the n numbers i_1^2+i_2, i_2^2+i_3, ..., i_{n-1}^2+i_n, i_n^2+i_1 (resp., the n numbers i_1^2-i_2, i_2^2-i_3, ..., i_{n-1}^2-i_n, i_n^2-i_1) are primitive roots modulo p.
%C A229141 (3)  Let p = 2*n+1 be an odd prime. If p > 19 (resp. p > 13), then there is a circular permutation i_1, ..., i_n of 1, ..., n such that all the n numbers i_1^2+i_2^2, i_2^2+i_3^2, ..., i_{n-1}^2+i_n^2, i_n^2+i_1^2 (resp., the n numbers i_1^2-i_2^2, i_2^2-i_3^2, ..., i_{n-1}^2-i_n^2, i_n^2-i_1^2) are primitive roots modulo p.
%C A229141 See also the linked arXiv paper of Sun for more conjectures involving primitive roots modulo primes.
%H A229141 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1309.1679">Some new problems in additive combinatorics</a>, preprint, arXiv:1309.1679 [math.NT], 2013-2014.
%e A229141 a(4) = 2 due to the permutations (1,3,2,4) and (1,4,3,2).
%e A229141 a(6) = 1 due to the permutation (1,3,5,2,6,4).
%e A229141 a(8) = 5 due to the permutations
%e A229141    (1,3,4,2,5,8,6,7), (1,8,3,6,2,4,5,7), (1,8,3,6,7,4,2,5),
%e A229141    (1,8,3,7,6,2,4,5), (1,8,6,7,3,4,2,5).
%e A229141 a(9) > 0 due to the permutation (1,3,7,6,8,4,9,2,5).
%t A229141 (* A program to compute the desired circular permutations for n = 8. *)
%t A229141 f[i_,j_,p_]:=f[i,j,p]=JacobiSymbol[i^2+j,p]==1
%t A229141 V[i_]:=Part[Permutations[{2,3,4,5,6,7,8}],i]
%t A229141 m=0
%t A229141 Do[Do[If[f[If[j==0,1,Part[V[i],j]],If[j<7,Part[V[i],j+1],1],17]==False,Goto[aa]],{j,0,7}];
%t A229141 m=m+1;Print[m,":"," ",1," ",Part[V[i],1]," ",Part[V[i],2]," ",Part[V[i],3]," ",Part[V[i],4]," ",Part[V[i],5]," ",Part[V[i],6]," ",Part[V[i],7]];Label[aa];Continue,{i,1,7!}]
%Y A229141 Cf. A229038, A229082, A229130, A229005.
%K A229141 nonn,more,hard
%O A229141 1,4
%A A229141 _Zhi-Wei Sun_, Sep 15 2013
%E A229141 a(10) = 0 from  _R. J. Mathar_, Sep 15 2013