This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229153 #20 Jan 30 2025 17:36:49 %S A229153 6,10,14,15,21,22,24,26,30,33,34,35,38,39,40,42,46,51,54,55,56,57,58, %T A229153 60,62,65,66,69,70,74,77,78,82,84,85,86,87,88,90,91,93,94,95,96,102, %U A229153 104,105,106,110,111,114,115,118,119,120,122,123,126,129,130,132,133,134,135,136,138,140,141,142,143,145,146,150 %N A229153 Numbers of the form c * m^2, where m > 0 and c is composite and squarefree. %C A229153 Subsequence of A048943. According to _Gerard P. Michon_, one of the criteria for N to belong to A048943 is that it has at least two prime factors with odd multiplicities. By definition, the composite factor c in any term of A229153 conforms to this criterion. %C A229153 From a(1) to a(63), identical to the given terms of A119847, except for the single term a(55) = 120. %H A229153 Chris Boyd, <a href="/A229153/b229153.txt">Table of n, a(n) for n = 1..10000</a> %o A229153 (PARI) iscomposite(n)={if(!isprime(n)&&n!=1,return(1));} %o A229153 test(n)={if(iscomposite(core(n)),return(1));} %o A229153 for(n=1,200,if(test(n)==1,print1(n","))) %o A229153 (PARI) lista(nn) = {for(n=1,nn, if(!ispseudoprime(core(n)) && !issquare(n), print1(n, ", ")));} \\ _Altug Alkan_, Feb 04 2016 %o A229153 (PARI) list(lim)=my(v=List()); forsquarefree(c=6,lim\=1, if(#c[2]~ > 1, for(m=1,sqrtint(lim\c[1]), listput(v, c[1]*m^2)))); Set(v) \\ _Charles R Greathouse IV_, Jan 09 2022 %o A229153 (Python) %o A229153 from math import isqrt %o A229153 from sympy import primepi, mobius %o A229153 def A229153(n): %o A229153 def f(x): %o A229153 c = n+x+(a:=isqrt(x)) %o A229153 for y in range(1,a+1): %o A229153 m = x//y**2 %o A229153 c += primepi(m)-sum(mobius(k)*(m//k**2) for k in range(1, isqrt(m)+1)) %o A229153 return c %o A229153 m, k = n, f(n) %o A229153 while m != k: m, k = k, f(k) %o A229153 return m # _Chai Wah Wu_, Jan 30 2025 %Y A229153 Complement of A265640. %Y A229153 Cf. A048943, A229125. %K A229153 nonn %O A229153 1,1 %A A229153 _Chris Boyd_, Sep 15 2013