cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229156 Decimal expansion of the negated value of the integral over (1/(1-y) + 1/log(y))*log(1-y)/y between 0 and 1.

This page as a plain text file.
%I A229156 #11 Dec 27 2016 02:36:16
%S A229156 9,1,6,2,4,0,1,4,9,8,4,4,2,9,5,8,3,0,5,3,4,8,0,9,2,7,5,6,2,5,7,3,3,3,
%T A229156 8,8,8,0,1,4,4,7,1,8,2,3,9,3,8,7,6,1,3,7,8,4,4,1,8,9,2,2,3,9,4,4,7,3,
%U A229156 5,1,9,8,4,7,7,9,6,7,2,8,6,8,6,9,3,5,9
%N A229156 Decimal expansion of the negated value of the integral over (1/(1-y) + 1/log(y))*log(1-y)/y between 0 and 1.
%H A229156 G. C. Greubel, <a href="/A229156/b229156.txt">Table of n, a(n) for n = 0..2500</a>
%H A229156 D. Zagier, <a href="http://dx.doi.org/10.1007/BF01343950">A Kronecker limit formula for real quadratic fields</a>, Mathem. Ann. 213 (2) (1975) 153-184, value of F(1), equation (7.12).
%F A229156 Equals A155969/2 + A072691 + A082633.
%e A229156 -0.91624014984429583053480927562573338...
%t A229156 RealDigits[N[EulerGamma^2/2 + Pi^2/12 + StieltjesGamma[1], 2501]][[1]] (* _G. C. Greubel_, Dec 26 2016 *)
%o A229156 (PARI) intnum(y=0, 1, (1/(1-y)+1/log(y)) *log(1-y) /y) \\ _Michel Marcus_, Dec 26 2016
%K A229156 nonn,cons
%O A229156 0,1
%A A229156 _R. J. Mathar_, Sep 15 2013