cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229168 Define a sequence of real numbers by b(1)=2, b(n+1) = b(n) + log_2(b(n)); a(n) = smallest i such that b(i) >= 2^n.

Original entry on oeis.org

1, 3, 5, 7, 11, 17, 27, 44, 74, 127, 225, 402, 728, 1333, 2459, 4566, 8525, 15993, 30122, 56936, 107953, 205253, 391223, 747369, 1430648, 2743721, 5270959, 10141978, 19542806, 37708232, 72849931, 140905791, 272836175, 528832794, 1026008203, 1992390617
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2013

Keywords

Examples

			The initial terms of the b(n) sequence are approximately
2, 3.00000000000000000000000, 4.58496250072115618145375, 6.78187243514238888864578, 9.54355608312733448665509, 12.7980830210090262451102, 16.4759388461842196480290, 20.5182276175427023220954, 24.8770618274970204646817, 29.5138060245244394221195, 34.3971240984210783617324, ...
b(5) is the first term >= 8, so a(3) = 5.
		

Crossrefs

Programs

  • Maple
    # A229168, A229169, A229170.
    Digits:=24;
    log2:=evalf(log(2));
    lis:=[2]; a:=2;
    t1:=[1]; l:=2;
    for i from 2 to 128 do
    a:=evalf(a+log(a)/log2);
    if a >= 2^l then
    l:=l+1; t1:=[op(t1),i]; fi;
    lis:=[op(lis),a];
    od:
    lis;
    map(floor,lis);
    map(ceil,lis);
    t1;
  • PARI
    n=1; p2=2^n; m=2; lg2=log(2); for(i=1, 1992390617, if(m>=p2, print(n " " i); n++; p2=2^n); m=m+log(m)/lg2) /* Donovan Johnson, Oct 04 2013 */

Extensions

a(11)-a(36) from Donovan Johnson, Oct 04 2013