This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229184 #39 Oct 16 2024 14:52:46 %S A229184 0,1,2,3,4,5,6,7,8,9,71,145,167,264,361,757,1000,1439,1791,2233,3525, %T A229184 3627,3959,4096,4864,4995,6677,8000,8128,8672,9575,10648,14848,23488, %U A229184 24976,25199,25829,26549,27000,27224,35648,39304,43235,50653,53893,64000,74088,79507,91215,93285,94365 %N A229184 Numbers decremented by their digit product produce a cube. %C A229184 4 is the only zeroless number < 10^7 that is a member of this sequence and A229185 (Numbers incremented by their digit product produce a cube). %e A229184 167 - 1*6*7 = 125 = 5^3. %t A229184 Select[Range[0,100000], IntegerQ[(# - Times @@ IntegerDigits[#])^(1/3)] &] (* _T. D. Noe_, Sep 16 2013 *) %o A229184 (Python) %o A229184 def DP(n): %o A229184 p = 1 %o A229184 for i in str(n): %o A229184 p *= int(i) %o A229184 return p %o A229184 for n in range(10**4): %o A229184 k = 0 %o A229184 P = n - DP(n) %o A229184 while P >= k**3: %o A229184 if P == k**3: %o A229184 print(n, end=', ') %o A229184 break %o A229184 k += 1 %o A229184 # Simplified by _Derek Orr_, Mar 12 2015 %o A229184 (PARI) for(n=0,10^5,d=digits(n);P=n-prod(i=1,#d,d[i]);if(ispower(P,3),print1(n,", "))) \\ _Derek Orr_, Mar 12 2015 %Y A229184 Cf. A007954, A228187. %K A229184 nonn,easy,base %O A229184 1,3 %A A229184 _Derek Orr_, Sep 15 2013 %E A229184 More terms and prepended a(1) = 0 from _Derek Orr_, Mar 12 2015