cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229198 Difference between integers nearest to (2^((n-3)/2) + 3^((n-3)/2)) (A229194) and Fibonacci numbers (A000045).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 8, 19, 42, 89, 183, 366, 718, 1385, 2636, 4961, 9249, 17105, 31416, 57356, 104170, 188331, 339119, 608464, 1088286, 1940994, 3453084, 6129207, 10857097, 19196490, 33884792, 59721438, 105113418, 184774518, 324436647, 569068543, 997205614, 1745923072, 3054338540, 5339361915, 9327547185, 16284517131, 28414038840, 49551994304, 86372825386, 150486363173
Offset: 0

Views

Author

Vladimir Pletser, Sep 15 2013

Keywords

Comments

The following terms are Fibonacci numbers: a(9) = F(2), a(10)= F(4) , a(11) = F(6), a(14) = F(11); or the algebraic sum of two Fibonacci numbers: a(12) = F(8) - F(3), a(13) = F(10) - F(7), a(14) = F(12) - F(10); or the algebraic sum of three Fibonacci numbers: a(15) = F(12) + F(9) + F(5), a(16) = F(14) - F(6) - F(4), a(18) = F(16) + F(14) + F(8), a(19) = F(18) + F(10) - F(3).

Crossrefs

Programs

  • Maple
    with (combinat): seq(round(2^((n-3)/2)+3^((n-3)/2))-fibonacci(n), n=0..50);

Formula

a(n) = A229194(n) - A000045(n)