This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229215 #28 Jun 12 2024 09:40:44 %S A229215 1,-3,1,-3,-2,-3,1,-3,1,-3,-2,-3,-2,-1,-2,-3,-2,-3,1,-3,1,-3,-2,-3,1, %T A229215 -3,1,-3,-2,-3,-2,-1,-2,-3,-2,-3,-2,-1,-2,-1,3,-1,-2,-1,-2,-3,-2,-3, %U A229215 -2,-1,-2,-3,-2,-3,1,-3,1,-3,-2,-3,1,-3,1,-3,-2,-3,-2 %N A229215 If 1, 2, and 3 represent the three 2D vectors (1,0), (0.5,sqrt(3)/2) and (-0.5,sqrt(3)/2) and -1, -2 and -3 are the negation of these vectors, then this sequence represents Gosper's island. %C A229215 The sequence is generated by the rewriting rules %C A229215 P(1) = 1,-3,1, %C A229215 P(2) = 2,1,2, %C A229215 P(3) = 3,2,3, %C A229215 P(-3) = -3,-2,-3, %C A229215 P(-2) = -2,-1,-2, %C A229215 P(-1) = -1,3,-1. %C A229215 The start is 1,2,3,-1,-2,-3. %C A229215 Notice P(-x)= -P(x), since P(x) is symmetric. %C A229215 Among the starting values, only the initial "1" is relevant for computation of the sequence, the image of the other elements (2,3,-1,-2,-3) becomes "pushed away" to infinity. - _M. F. Hasler_, Aug 06 2015 %H A229215 Paolo Xausa, <a href="/A229215/b229215.txt">Table of n, a(n) for n = 1..19683</a> %H A229215 Arie Bos, <a href="http://arxiv.org/abs/1210.7123">Index notation of grid graphs</a>, arXiv:1210.7123 [cs.CG], 2012. %H A229215 Wikipedia, <a href="http://en.wikipedia.org/wiki/Gosper_curve">Gosper curve</a> %H A229215 <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a> %e A229215 Start with 1,2,3,-1,-2,-3 and you get %e A229215 in the first step 1,-3,1,2,1,2,3,2,3,-1,3,-1,-2,-1,-2,-3,-2,-3 and %e A229215 in the second step 1,-3,1,-3,-2,-3,1,-3,1,2,1,2,1,-3, ... ,-1,-2,-3,-2,-3. %e A229215 With each step the length increases by a factor of 3. %t A229215 SubstitutionSystem[{t_ :> {{1,-3,1}, {2,1,2}, {3,2,3}}[[Abs[t]]]*Sign[t]}, {1}, {3}][[1]] (* _Paolo Xausa_, Jun 12 2024 *) %o A229215 (PARI) (P(v)=concat(apply(i->[i,i-sign(i)*4^(i*i<2),i],v)));A229215=P(P(P(P([1])))) \\ To get a(n), ceil(log_3(n)) iterations are required. - _M. F. Hasler_, Aug 06 2015 %Y A229215 Cf. A229214. %K A229215 easy,sign %O A229215 1,2 %A A229215 _Arie Bos_, Sep 24 2013 %E A229215 Definition corrected by _Kerry Mitchell_, Aug 06 2015