This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229232 #29 Apr 02 2025 15:56:36 %S A229232 0,0,0,1,0,2,1,2,2,8,2,241,0,693,376,7687,1082,127563,25113,1353842, %T A229232 559649 %N A229232 Number of undirected circular permutations pi(1), ..., pi(n) of 1, ..., n with the n numbers pi(1)*pi(2)-1, pi(2)*pi(3)-1, ..., pi(n-1)*pi(n)-1, pi(n)*pi(1)-1 all prime. %C A229232 Conjecture: a(n) > 0 for all n > 5 with n not equal to 13. %C A229232 Zhi-Wei Sun also made the following conjectures: %C A229232 (1) For any integer n > 1, there is a permutation pi(1), ..., pi(n) of 1, ..., n such that the n numbers 2*pi(1)*pi(2)-1, ..., 2*pi(n-1)*pi(n)-1, 2*pi(n)*pi(1)-1 are all prime. Also, for any positive integer n not equal to 4, there is a permutation pi(1), ..., pi(n) of 1, ..., n such that the n numbers 2*pi(1)*pi(2)+1, ..., 2*pi(n-1)*pi(n)+1, 2*pi(n)*pi(1)+1 are all prime. %C A229232 (2) Let F be a finite field with q > 7 elements. Then, there is a circular permutation a_1,...,a_{q-1} of the q-1 nonzero elements of F such that all the q-1 elements a_1*a_2-1, a_2*a_3-1, ..., a_{q-2}*a_{q-1}-1, a_{q-1}*a_1-1 are primitive elements of the field F (i.e., generators of the multiplicative group F\{0}). Also, there is a circular permutation b_1,...,b_{q-1} of the q-1 nonzero elements of F such that all the q-1 elements b_1*b_2+1, b_2*b_3+1, ..., b_{q-2}*b_{q-1}+1, b_{q-1}*b_1+1 are primitive elements of the field F. %H A229232 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1309.1679">Some new problems in additive combinatorics</a>, preprint, arXiv:1309.1679 [math.NT], 2013-2014. %e A229232 a(4) = 1 due to the circular permutation (1,3,2,4). %e A229232 a(6) = 2 due to the circular permutations %e A229232 (1,3,2,4,5,6) and (1,3,2,6,5,4). %e A229232 a(7) = 1 due to the circular permutation (1,3,2,7,6,5,4). %e A229232 a(8) = 2 due to the circular permutations %e A229232 (1,3,2,7,6,5,4,8) and (1,4,5,6,7,2,3,8). %e A229232 a(9) = 2 due to the circular permutations %e A229232 (1,3,4,5,6,7,2,9,8) and (1,3,8,9,2,7,6,5,4). %e A229232 a(10) = 8 due to the circular permutations %e A229232 (1,3,4,5,6,7,2,9,10,8), (1,3,4,5,6,7,2,10,9,8), %e A229232 (1,3,8,9,10,2,7,6,5,4), (1,3,8,10,9,2,7,6,5,4), %e A229232 (1,3,10,8,9,2,7,6,5,4), (1,3,10,9,2,7,6,5,4,8), %e A229232 (1,4,5,6,7,2,3,10,9,8), (1,4,5,6,7,2,9,10,3,8). %e A229232 a(13) = 0 since 8 is the unique j among 1, ..., 12 with 13*j-1 prime. %t A229232 (* A program to compute required circular permutations for n = 8. To get "undirected" circular permutations, we should identify a circular permutation with the one of the opposite direction; for example, (1,8,4,5,6,7,2,3) is identical to (1,3,2,7,6,5,4,8) if we ignore direction. Thus, a(8) is half of the number of circular permutations yielded by this program. *) %t A229232 V[i_]:=V[i]=Part[Permutations[{2,3,4,5,6,7,8}],i] %t A229232 f[i_,j_]:=f[i,j]=PrimeQ[i*j-1] %t A229232 m=0 %t A229232 Do[Do[If[f[If[j==0,1,Part[V[i],j]],If[j<7,Part[V[i],j+1],1]]==False,Goto[aa]],{j,0,7}]; %t A229232 m=m+1;Print[m,":"," ",1," ",Part[V[i],1]," ",Part[V[i],2]," ",Part[V[i],3]," ",Part[V[i],4]," ",Part[V[i],5]," ",Part[V[i],6]," ",Part[V[i],7]];Label[aa];Continue,{i,1,7!}] %Y A229232 Cf. A051252, A227456, A228917, A228956, A229082. %K A229232 nonn,more,hard %O A229232 1,6 %A A229232 _Zhi-Wei Sun_, Sep 16 2013 %E A229232 a(11)-a(21) from _Pontus von Brömssen_, Jan 08 2025