cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229239 Total number of parts in all partitions of n^2 into squares.

This page as a plain text file.
%I A229239 #28 Dec 07 2016 02:37:27
%S A229239 0,1,5,19,64,206,616,1766,4836,12910,33248,83768,205693,495357,
%T A229239 1169030,2713262,6193247,13932454,30905452,67684181,146439145,
%U A229239 313266730,663004212,1389106622,2882712626,5928222338,12086570971,24440494114,49035791349,97646904849
%N A229239 Total number of parts in all partitions of n^2 into squares.
%H A229239 Alois P. Heinz and Vaclav Kotesovec, <a href="/A229239/b229239.txt">Table of n, a(n) for n = 0..689</a> (terms 0..200 from Alois P. Heinz)
%H A229239 Christopher Hunt Gribble, <a href="/A229239/a229239.cpp.txt">C++ program</a>
%e A229239 a(2) = 5 because there are 5 parts in the set of partitions of 2^2 into squares. The partitions are (1 2 X 2 square) and (4 1 X 1 squares) giving 5 parts in all.
%p A229239 b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0$2],
%p A229239        b(n, i-1)+`if`(i^2>n, [0$2], (g->g+[0, g[1]])(b(n-i^2, i)))))
%p A229239     end:
%p A229239 a:= n-> b(n^2, n)[2]:
%p A229239 seq(a(n), n=0..40);  # _Alois P. Heinz_, Sep 23 2013
%t A229239 b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, b[n, i-1] + If[ i^2 > n, {0, 0}, Function[g, g + {0, g[[1]]}][b[n - i^2, i]]]]]; a[n_] := b[n^2, n][[2]]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Nov 11 2015, after _Alois P. Heinz_ *)
%Y A229239 Row sums of A229468.
%Y A229239 Cf. A037444.
%K A229239 nonn
%O A229239 0,3
%A A229239 _Christopher Hunt Gribble_, Sep 23 2013