cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229254 Numbers k such that k and k+2 have the same number (A000005) and sum of divisors (A000203).

This page as a plain text file.
%I A229254 #11 Jul 28 2025 20:18:42
%S A229254 33,54,918,1240,3304,4148,4187,7169,12565,15085,19688,24881,25019,
%T A229254 26609,38982,51835,53963,59987,76360,77057,96728,143369,150419,167560,
%U A229254 170561,205727,215069,220817,278920,418307,564857,731320,785270,907254,910315,986153
%N A229254 Numbers k such that k and k+2 have the same number (A000005) and sum of divisors (A000203).
%C A229254 Also numbers k such that A229335(k) = A229335(k+2).
%C A229254 Intersection of A007373 and A062832.
%H A229254 Donovan Johnson, <a href="/A229254/b229254.txt">Table of n, a(n) for n = 1..1000</a>
%e A229254 Divisors of 54 = {1, 2, 3, 6, 9, 18, 27, 54}, divisors of 56 = {1, 2, 4, 7, 8, 14, 28, 56}, both have 8 divisors and sum = 120.
%t A229254 Select[Range[10000], DivisorSigma[0, #] == DivisorSigma[0, # + 2] && DivisorSigma[1, #] == DivisorSigma[1, # + 2] &]
%o A229254 (PARI) isok(n) = (numdiv(n) == numdiv(n+2)) && (sigma(n) == sigma(n+2)); \\ _Michel Marcus_, Sep 20 2013
%Y A229254 Cf. A007373, A062832, A000005, A000203, A229335.
%K A229254 nonn
%O A229254 1,1
%A A229254 _Jaroslav Krizek_, Sep 20 2013
%E A229254 More terms from _Michel Marcus_, Sep 20 2013