A229255 Integer nearest to (2^(n-1) + 3^(n-1))^(2*b(n)) where b(n) = (C1*n^(Pi)*exp(C2*n)*cos(C3*n+C4) + C5)*(C6*n^C7 + Pi/2) (see coefficients in comments).
4, 25, 168, 1229, 9592, 78488, 664356, 5761311, 50857532, 455110791, 4117706679, 37598394076, 345973354409, 3204537723387, 29847287869987, 279317953220125, 2624541016148480, 24747919106286414, 234089443816438414, 2220530456953251916, 21119025631088169139, 201358809736398135352, 1924434871799161020533, 18434884359943473267194, 176994218822287711757127
Offset: 1
Examples
For n=1, b(1) = (C1*exp(C2)*cos(C3+C4) + C5)*(C6 + Pi/2) = 0.99382..., then a(1) = round(2^(2*0.99382...)) = round(3.96588...) = 4.
Links
- Vladimir Pletser, Table of n, a(n) for n = 1..500
- Eric Weisstein's World of Mathematics, Prime Counting Function
Programs
-
Maple
C1:=27829/125000000: C2:=-5.91561e-01: C3:=441/2500: C4:=5: C5:=19703973/31250000: C6:=5.241804273e-03: C7:=6.246728093e-01: b:=n-> (C1*n^(Pi)*exp(C2*n)*cos(C3*n+C4)+C5)*(C6*n^C7+(Pi/2)): seq(round((2^(n-1)+3^(n-1))^(2*b(n))), n=1..25);
Formula
a(n) = round((2^(n-1) + 3^(n-1))^(2*(C1*n^(Pi)*exp(C2*n)*cos(C3*n+C4) + C5)*(C6*n^C7 + Pi/2))).
Comments