cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229258 O.g.f.: Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 - n^2*k*x).

This page as a plain text file.
%I A229258 #14 Jan 30 2022 11:40:28
%S A229258 1,1,3,31,573,18031,854613,57433951,5242645173,625589806831,
%T A229258 95051257799973,17976303383444671,4153215615930529173,
%U A229258 1154304694449774708751,380809177225169291456133,147420687475847638142996191,66303807316628093952943203573
%N A229258 O.g.f.: Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 - n^2*k*x).
%H A229258 Seiichi Manyama, <a href="/A229258/b229258.txt">Table of n, a(n) for n = 0..227</a>
%F A229258 a(n) = Sum_{k=0..n} (k^2)^(n-k) * k! * Stirling2(n, k).
%F A229258 E.g.f.: Sum_{n>=0} (exp(n^2*x) - 1)^n / n^(2*n).
%e A229258 O.g.f.: A(x) = 1 + x + 3*x^2 + 31*x^3 + 573*x^4 + 18031*x^5 + 854613*x^6 +...
%e A229258 where
%e A229258 A(x) = 1 + x/(1-x) + 2!*x^2/((1-2^2*1*x)*(1-2^2*2*x)) + 3!*x^3/((1-3^2*1*x)*(1-3^2*2*x)*(1-3^2*3*x)) + 4!*x^4/((1-4^2*1*x)*(1-4^2*2*x)*(1-4^2*3*x)*(1-4^2*4*x)) +...
%e A229258 Exponential Generating Function.
%e A229258 E.g.f.: E(x) = 1 + x + 3*x^2/2! + 31*x^3/3! + 573*x^4/4! + 18031*x^5/5! +...
%e A229258 where
%e A229258 E(x) = 1 + (exp(x)-1) + (exp(4*x)-1)^2/4^2 + (exp(9*x)-1)^3/9^3 + (exp(16*x)-1)^4/16^4 + (exp(25*x)-1)^5/25^5 +...
%t A229258 Flatten[{1,Table[Sum[(k^2)^(n-k) * k! * StirlingS2[n, k],{k,0,n}],{n,1,20}]}] (* _Vaclav Kotesovec_, May 08 2014 *)
%o A229258 (PARI) {a(n)=polcoeff(sum(m=0,n,m!*x^m/prod(k=1,m,1-m^2*k*x +x*O(x^n))),n)}
%o A229258 for(n=0,20,print1(a(n),", "))
%o A229258 (PARI) {a(n)=n!*polcoeff(sum(m=0,n,(exp(m^2*x+x*O(x^n))-1)^m/m^(2*m)),n)}
%o A229258 for(n=0,20,print1(a(n),", "))
%o A229258 (PARI) {a(n)=sum(k=0, n, (k^2)^(n-k) * k! * stirling(n, k, 2))}
%o A229258 for(n=0,20,print1(a(n),", "))
%Y A229258 Cf. A229257, A229259, A229260, A229261; A229233, A229234, A220181, A122399.
%K A229258 nonn
%O A229258 0,3
%A A229258 _Paul D. Hanna_, Sep 17 2013