A229269 Numbers k for which k - k' is prime, k' being the arithmetic derivative of k.
3, 9, 10, 14, 15, 21, 26, 33, 35, 38, 39, 50, 51, 62, 65, 66, 69, 70, 77, 78, 86, 91, 93, 95, 102, 110, 111, 114, 122, 123, 129, 130, 133, 138, 146, 154, 159, 161, 170, 174, 190, 201, 203, 206, 209, 213, 215, 217, 218, 221, 222, 230, 238, 249, 258, 278, 282, 287
Offset: 1
Keywords
Examples
15 is in the list because 15’ = 8 and 15 - 8 = 7 that is prime.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory); P:=proc(q) local a,n,p; for n from 1 to q do a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); if isprime(n-a) then print(n); fi; od; end: P(10^5);
-
Python
from sympy import isprime, factorint A229269 = [n for n in range(1,10**4) if isprime(n-sum([int(n*e/p) for p,e in factorint(n).items()]))] # Chai Wah Wu, Aug 21 2014