This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229272 #18 Oct 16 2024 14:52:36 %S A229272 210,330,390,690,798,966,1110,1230,2190,2310,2730,3270,4110,4530,4890, %T A229272 5430,6090,6270,6810,6990,7230,7890,8310,8490,9030,9210,9282,10470, %U A229272 10590,10770,12090,12210,12270,12570,12810,12930,13110,13830,14070,17070,17094,17310 %N A229272 Numbers n for which n' + n and n' - n are both prime, n' being the arithmetic derivative of n. %C A229272 Intersection of A165561 and A229270. %H A229272 Paolo P. Lava, <a href="/A229272/b229272.txt">Table of n, a(n) for n = 1..300</a> %p A229272 with(numtheory); P:=proc(q) local a,n,p; for n from 1 to q do %p A229272 a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); %p A229272 if isprime(a+n) and isprime(a-n) then print(n); fi; %p A229272 od; end: P(10^5); %o A229272 (Python) %o A229272 from sympy import isprime, factorint %o A229272 A229272 = [] %o A229272 for n in range(1, 10**5): %o A229272 np = sum([int(n*e/p) for p, e in factorint(n).items()]) if n > 1 else 0 %o A229272 if isprime(np+n) and isprime(np-n): %o A229272 A229272.append(n) %o A229272 # _Chai Wah Wu_, Aug 21 2014 %Y A229272 Cf. A003415, A165561, A165562, A229269-A229271. %K A229272 nonn %O A229272 1,1 %A A229272 _Paolo P. Lava_, Sep 18 2013