A229291 n is in the sequence if n is prime, (n-1)/5^A112765(n-1) is a squarefree number, A112765(n-1) < 3 and every prime divisor of n-1 is in the sequence.
2, 3, 5, 7, 11, 23, 31, 43, 47, 67, 71, 139, 151, 211, 283, 311, 331, 431, 463, 659, 683, 691, 863, 907, 947, 967, 1051, 1151, 1291, 1303, 1319, 1367, 1427, 1511, 1699, 1867, 1979, 1987, 2011, 2111, 2131, 2311, 2351, 2531, 3011, 3023, 3083, 3323, 3851, 4099
Offset: 1
Keywords
Programs
-
Mathematica
fa = FactorInteger; free[n_] := n == Product[fa[n][[i, 1]], {i, Length[fa[n]]}]; Os[b_, 1] = True; Os[b_, 2] = True; Os[ b_, b_] = True; Os[b_, n_] := Os[b, n] = PrimeQ[n] && free[(n - 1)/b^IntegerExponent[n - 1,b]] && IntegerExponent[n - 1, b] < 3 && Union@Table[Os[b, fa[n - 1][[i, 1]]], {i, Length[fa[n - 1]]}] == {True}; G[b_] := Select[Prime [Range[2000]], Os[b, #] &]; G[5]
Comments