A229301 Numbers n such that A031971(42*n) == n (mod 42*n).
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 44, 45, 46, 47, 48, 49, 51, 53, 54, 56, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
- Jose María Grau, A. M. Oller-Marcen, and J. Sondow, On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n
Crossrefs
Programs
-
Maple
filter:= proc(n) local t,k; t:= add(k &^ (42*n) mod (42*n),k=1..42*n); t mod (42*n) = n end proc: select(filter, [$1..100]); # Robert Israel, Dec 15 2020
-
Mathematica
g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n];Select[Range[100], g[42*#] == # &]
Comments