A229302 Numbers n such that A031971(6*n) == n (mod 6*n).
1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 22, 23, 24, 25, 27, 29, 31, 32, 33, 34, 36, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 51, 53, 54, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 81, 82, 83, 85, 86, 87, 88, 89, 92, 93
Offset: 1
Keywords
Links
- Jose María Grau, A. M. Oller-Marcen, and J. Sondow, On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n
Crossrefs
Programs
-
Mathematica
g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[100], g[6*#] == # &]
Comments