This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229304 #20 Dec 11 2015 22:06:10 %S A229304 10,20,26,30,40,50,52,55,57,58,60,70,78,80,90,100,104,110,114,116,120, %T A229304 130,136,140,150,155,156,160,165,170,171,174,180,182,190,200,208,210, %U A229304 220,222,228,230,232,234,240,250,253,260,270,272,275,280,285,286,290 %N A229304 Numbers n such that A031971(1806*n) <> n (mod 1806*n). %C A229304 Complement of A229300. %C A229304 The asymptotic density is in [0.1921, 0.212]. %C A229304 If n is in A then k*n is in A for all natural number k. %C A229304 The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. [Comment corrected and expanded by _Jonathan Sondow_, Dec 10 2013] %H A229304 Jose María Grau, A. M. Oller-Marcen, and J. Sondow, <a href="http://arxiv.org/abs/1309.7941">On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n</a> %t A229304 g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[100], !g[1806*#] == # &] %Y A229304 Cf. A014117 (numbers n such that A031971(n)==1 (mod n)). %Y A229304 Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)). %Y A229304 Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)). %Y A229304 Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)). %Y A229304 Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)). %Y A229304 Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)). %Y A229304 Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)). %Y A229304 Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)). %Y A229304 Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)). %Y A229304 Cf. A229308 (primitive numbers in A229304). %Y A229304 Cf. A229309 (primitive numbers in A229305). %Y A229304 Cf. A229310 (primitive numbers in A229306). %Y A229304 Cf. A229311 (primitive numbers in A229307). %K A229304 nonn %O A229304 1,1 %A A229304 _José María Grau Ribas_, Sep 19 2013