A229306 Numbers n such that A031971(6*n) <> n (mod 6*n).
7, 10, 14, 20, 21, 26, 28, 30, 35, 40, 42, 49, 50, 52, 55, 56, 57, 60, 63, 70, 77, 78, 80, 84, 90, 91, 98, 100, 104, 105, 110, 112, 114, 119, 120, 126, 130, 133, 136, 140, 147, 150, 154, 155, 156, 160, 161, 165, 168, 170, 171, 175, 180, 182, 189, 190, 196
Offset: 1
Keywords
Links
- Jose María Grau, A. M. Oller-Marcen, and J. Sondow, On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n
Crossrefs
Programs
-
Mathematica
g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[100], !g[6*#] == # &]
Comments