This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229308 #15 Oct 21 2013 09:47:50 %S A229308 10,26,55,57,58,136,155,222,253,346,355,381,737,876,904,1027,1055, %T A229308 1081,1552,1711,1751,1962,2155,2696,2758,3197,3403,3411,3775,3916, %U A229308 4063,4132,4401,5093,5671,6176,6455,6567,7111,7226,8251,8515,8702,9294,9316,9465 %N A229308 Primitive numbers in A229304. %H A229308 Jose María Grau, A. M. Oller-Marcen, and J. Sondow, <a href="http://arxiv.org/abs/1309.7941">On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n</a> %t A229308 g[n_] := Mod[Sum[PowerMod[i, n, n], {i, 1, n}], n]; tachar[lis_, num_] := Select[lis, ! IntegerQ[#1/num] &];primi[{}] = {}; primi[lis_] := Join[{lis[[1]]}, primi[tachar[lis, lis[[1]]]]]; primi@Select[Range[70], ! g[1806*#] == # &] %Y A229308 Cf. A014117 (numbers n such that A031971(n)==1 (mod n)). %Y A229308 Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)). %Y A229308 Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)). %Y A229308 Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)). %Y A229308 Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)). %Y A229308 Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)). %Y A229308 Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)). %Y A229308 Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)). %Y A229308 Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)). %Y A229308 Cf. A229308 (primitive numbers in A229304). %Y A229308 Cf. A229309 (primitive numbers in A229305). %Y A229308 Cf. A229310 (primitive numbers in A229306). %Y A229308 Cf. A229311 (primitive numbers in A229307). %K A229308 nonn %O A229308 1,1 %A A229308 _José María Grau Ribas_, Sep 20 2013