cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229311 Primitive numbers in A229307.

This page as a plain text file.
%I A229311 #14 Jul 04 2015 20:31:15
%S A229311 3,10,55,136,253,406,1081,1378,1711,2485,3403,3916,5671,6328,8515,
%T A229311 9316,11026,13861,14878,15931,18145,19306,25651,27028,28441,31375,
%U A229311 32896,34453,36046,42778,48205,50086,60031,62128,64261,73153,75466,87571,92665,97903
%N A229311 Primitive numbers in A229307.
%H A229311 Robert G. Wilson v, <a href="/A229311/b229311.txt">Table of n, a(n) for n = 1..67</a>
%H A229311 Jose María Grau, A. M. Oller-Marcen, and J. Sondow, <a href="http://arxiv.org/abs/1309.7941">On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n</a>
%t A229311 g[n_] := Mod[Sum[PowerMod[i, n, n], {i, 1, n}], n]; tachar[lis_, num_] := Select[lis, ! IntegerQ[#1/num] &]; primi[{}]={}; primi[lis_] := Join[{lis[[1]]}, primi[tachar[lis, lis[[1]]]]]; primi@Select[Range[500], !g[2*#] == # &]
%Y A229311 Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
%Y A229311 Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
%Y A229311 Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
%Y A229311 Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
%Y A229311 Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
%Y A229311 Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
%Y A229311 Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
%Y A229311 Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
%Y A229311 Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
%Y A229311 Cf. A229308 (primitive numbers in A229304).
%Y A229311 Cf. A229309 (primitive numbers in A229305).
%Y A229311 Cf. A229310 (primitive numbers in A229306).
%Y A229311 Cf. A229311 (primitive numbers in A229307).
%K A229311 nonn
%O A229311 1,1
%A A229311 _José María Grau Ribas_, Sep 24 2013