cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229312 Numbers n such that A031971(47058*n) == n (mod 47058*n).

This page as a plain text file.
%I A229312 #8 Dec 11 2015 22:05:03
%S A229312 5,15,25,45,55,65,75,85,95,115,125,135,145,155,165,185,195,205,215,
%T A229312 225,255,265,275,295,305,325,345,355,365,375,395,405,415,425,435,445,
%U A229312 465,475,485,495,505,515,535,545,555,565,575,585,605,615,625,635,645,655
%N A229312 Numbers n such that A031971(47058*n) == n (mod 47058*n).
%C A229312 The number 47058 occurring in the name is the sixth term of A230311.
%C A229312 The asymptotic density lies in the interval [0.0560465, 0.0800567].
%C A229312 Complement of A230313 .
%C A229312 For n<235295, A031971(47058*n) == n (mod 47058*n) if and only if A031971(2214502422*n) <> n (mod 2214502422*n).
%C A229312 The numbers in A230311 are the values of k such that the set {n : A031971(k*n)== n (mod k*n)} is nonempty.
%H A229312 Jose María Grau, A. M. Oller-Marcen, and J. Sondow, <a href="http://arxiv.org/abs/1309.7941">On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n</a>
%t A229312 fa = FactorInteger; Car[k_, n_] := Mod[n - Sum[If[IntegerQ[k/(fa[n][[i,
%t A229312    1]] - 1)], n/fa[n][[i, 1]], 0], {i, 1, Length[fa[n]]}], n]; supercar[k_, n_] := If[k == 1 || Mod[k, 2] == 0 || Mod[n, 4] > 0, Car[k,n], Mod[Car[k, n] - n/2, n]]; Select[Range[1000], supercar[47058*#, 47058*#] == # &]
%Y A229312 Cf. A031971, A230311.
%Y A229312 Cf. A231562 (numbers n such that A031971(8490421583559688410706771261086*n) == n (mod 8490421583559688410706771261086*n)).
%Y A229312 Cf. A229312 (numbers n such that A031971(47058*n) == n (mod 47058*n)).
%Y A229312 Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
%Y A229312 Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
%Y A229312 Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
%Y A229312 Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
%Y A229312 Cf. A229313 (numbers n such that A031971(47058*n) <> n (mod 47058*n)).
%Y A229312 Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
%Y A229312 Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
%Y A229312 Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
%Y A229312 Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
%Y A229312 Cf. A229308 (primitive numbers in A229304).
%Y A229312 Cf. A229309 (primitive numbers in A229305).
%Y A229312 Cf. A229310 (primitive numbers in A229306).
%Y A229312 Cf. A229311 (primitive numbers in A229307).
%K A229312 nonn
%O A229312 1,1
%A A229312 _José María Grau Ribas_, Oct 20 2013