A229314 Number of n X 1 0..3 arrays of the median of the corresponding element, the element to the east and the element to the south in a larger (n+1) X 2 0..3 array without adjacent equal elements in the latter.
4, 14, 50, 176, 622, 2196, 7756, 27390, 96730, 341606, 1206400, 4260462, 15046040, 53135856, 187651986, 662702554, 2340367858, 8265128408, 29188722358, 103081461140, 364037435444, 1285616763070, 4540221143674, 16034022443998
Offset: 1
Keywords
Examples
Some solutions for n=3: ..1....3....2....0....0....1....2....2....0....1....3....3....2....2....2....1 ..3....0....0....2....1....1....2....3....3....3....1....2....1....1....3....3 ..1....2....3....2....0....1....2....2....2....0....1....0....1....0....1....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 1 of A229320.
Formula
Empirical: a(n) = 3*a(n-1) + 2*a(n-2) - a(n-3) + 2*a(n-4).
Empirical g.f.: 2*x*(1 + x)*(2 - x + x^2) / (1 - 3*x - 2*x^2 + x^3 - 2*x^4). - Colin Barker, Sep 14 2018