cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229325 Total sum of cubes of parts in all partitions of n.

This page as a plain text file.
%I A229325 #28 May 28 2018 02:49:10
%S A229325 0,1,10,39,122,287,660,1281,2486,4392,7686,12628,20790,32471,50694,
%T A229325 76560,115038,168333,245784,350896,499620,699468,975150,1341077,
%U A229325 1838550,2490092,3361260,4494084,5986750,7909231,10416300,13616768,17745948,22983345,29672974
%N A229325 Total sum of cubes of parts in all partitions of n.
%C A229325 The bivariate g.f. for the partition statistic "sum of cubes of the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^3}*x^k). The g.f. g given in the Formula section was obtained by evaluating dG/dt at t=1. - _Emeric Deutsch_, Dec 06 2015
%H A229325 Alois P. Heinz, <a href="/A229325/b229325.txt">Table of n, a(n) for n = 0..8500</a>
%H A229325 Guo-Niu Han, <a href="https://arxiv.org/abs/0804.1849">An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths</a>, arXiv:0804.1849 [math.CO], 2008.
%F A229325 a(n) = Sum_{k=1..n} A066633(n,k) * k^3.
%F A229325 G.f.: g(x) = (Sum_{k>=1} k^3*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - _Emeric Deutsch_, Dec 06 2015
%F A229325 a(n) ~ sqrt(3)/5 * exp(Pi*sqrt(2*n/3)) * n. - _Vaclav Kotesovec_, May 28 2018
%p A229325 b:= proc(n, i) option remember; `if`(n=0, [1, 0],
%p A229325       `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
%p A229325       ((g, h)-> g+h+[0, h[1]*i^3])(b(n, i-1), b(n-i, i)))))
%p A229325     end:
%p A229325 a:= n-> b(n, n)[2]:
%p A229325 seq(a(n), n=0..40);
%t A229325 Table[Total[Flatten[IntegerPartitions[n]^3]],{n,0,40}] (* _Harvey P. Dale_, May 01 2016 *)
%t A229325 b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, {0, 0}, If[i>n, b[n, i-1], Function[{g, h}, g + h + {0, h[[1]]*i^3}][b[n, i-1], b[n-i, i]]]]];
%t A229325 a[n_] := b[n, n][[2]];
%t A229325 Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Aug 30 2016, after _Alois P. Heinz_ *)
%Y A229325 Column k=3 of A213191.
%K A229325 nonn
%O A229325 0,3
%A A229325 _Alois P. Heinz_, Sep 20 2013