cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229326 Total sum of 4th powers of parts in all partitions of n.

This page as a plain text file.
%I A229326 #24 May 28 2018 02:50:51
%S A229326 0,1,18,101,392,1119,2904,6407,13578,26218,49218,86782,150860,249723,
%T A229326 408810,647170,1013278,1545029,2337738,3460218,5086658,7350874,
%U A229326 10549872,14929931,21009874,29205500,40385036,55289000,75309056,101692923,136710130,182377824
%N A229326 Total sum of 4th powers of parts in all partitions of n.
%C A229326 The bivariate g.f. for the partition statistic "sum of 4th powers of the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^4}*x^k). The g.f. g at the Formula section has been obtained by evaluating dG/dt at t=1. - _Emeric Deutsch_, Dec 06 2015
%C A229326 Convolution of A001159 and A000041. - _Vaclav Kotesovec_, May 28 2018
%H A229326 Alois P. Heinz, <a href="/A229326/b229326.txt">Table of n, a(n) for n = 0..1000</a>
%H A229326 Guo-Niu Han, <a href="https://arxiv.org/abs/0804.1849">An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths</a>, arXiv:0804.1849 [math.CO], 2008.
%F A229326 a(n) = Sum_{k=1..n} A066633(n,k) * k^4.
%F A229326 G.f.: g(x) = (Sum_{k>=1} k^4*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - _Emeric Deutsch_, Dec 06 2015
%F A229326 a(n) ~ 216*sqrt(2)*Zeta(5)/Pi^5 * exp(Pi*sqrt(2*n/3)) * n^(3/2). - _Vaclav Kotesovec_, May 28 2018
%p A229326 b:= proc(n, i) option remember; `if`(n=0, [1, 0],
%p A229326       `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
%p A229326       ((g, h)-> g+h+[0, h[1]*i^4])(b(n, i-1), b(n-i, i)))))
%p A229326     end:
%p A229326 a:= n-> b(n, n)[2]:
%p A229326 seq(a(n), n=0..40);
%p A229326 # second Maple program:
%p A229326 g := (sum(k^4*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # _Emeric Deutsch_, Dec 06 2015
%t A229326 (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k < n := T[n, k] = T[n-k, k] + PartitionsP[n-k]; T[_, _] = 0; a[n_] := Sum[T[n, k]*k^4, {k, 1, n}]; Array[a, 32, 0] (* _Jean-François Alcover_, Dec 15 2016 *)
%t A229326 Table[Sum[DivisorSigma[4, k]*PartitionsP[n-k], {k, 1, n}], {n, 0, 40}] (* _Vaclav Kotesovec_, May 27 2018 *)
%Y A229326 Column k=4 of A213191.
%K A229326 nonn
%O A229326 0,3
%A A229326 _Alois P. Heinz_, Sep 20 2013