This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A229326 #24 May 28 2018 02:50:51 %S A229326 0,1,18,101,392,1119,2904,6407,13578,26218,49218,86782,150860,249723, %T A229326 408810,647170,1013278,1545029,2337738,3460218,5086658,7350874, %U A229326 10549872,14929931,21009874,29205500,40385036,55289000,75309056,101692923,136710130,182377824 %N A229326 Total sum of 4th powers of parts in all partitions of n. %C A229326 The bivariate g.f. for the partition statistic "sum of 4th powers of the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^4}*x^k). The g.f. g at the Formula section has been obtained by evaluating dG/dt at t=1. - _Emeric Deutsch_, Dec 06 2015 %C A229326 Convolution of A001159 and A000041. - _Vaclav Kotesovec_, May 28 2018 %H A229326 Alois P. Heinz, <a href="/A229326/b229326.txt">Table of n, a(n) for n = 0..1000</a> %H A229326 Guo-Niu Han, <a href="https://arxiv.org/abs/0804.1849">An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths</a>, arXiv:0804.1849 [math.CO], 2008. %F A229326 a(n) = Sum_{k=1..n} A066633(n,k) * k^4. %F A229326 G.f.: g(x) = (Sum_{k>=1} k^4*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - _Emeric Deutsch_, Dec 06 2015 %F A229326 a(n) ~ 216*sqrt(2)*Zeta(5)/Pi^5 * exp(Pi*sqrt(2*n/3)) * n^(3/2). - _Vaclav Kotesovec_, May 28 2018 %p A229326 b:= proc(n, i) option remember; `if`(n=0, [1, 0], %p A229326 `if`(i<1, [0, 0], `if`(i>n, b(n, i-1), %p A229326 ((g, h)-> g+h+[0, h[1]*i^4])(b(n, i-1), b(n-i, i))))) %p A229326 end: %p A229326 a:= n-> b(n, n)[2]: %p A229326 seq(a(n), n=0..40); %p A229326 # second Maple program: %p A229326 g := (sum(k^4*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # _Emeric Deutsch_, Dec 06 2015 %t A229326 (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k < n := T[n, k] = T[n-k, k] + PartitionsP[n-k]; T[_, _] = 0; a[n_] := Sum[T[n, k]*k^4, {k, 1, n}]; Array[a, 32, 0] (* _Jean-François Alcover_, Dec 15 2016 *) %t A229326 Table[Sum[DivisorSigma[4, k]*PartitionsP[n-k], {k, 1, n}], {n, 0, 40}] (* _Vaclav Kotesovec_, May 27 2018 *) %Y A229326 Column k=4 of A213191. %K A229326 nonn %O A229326 0,3 %A A229326 _Alois P. Heinz_, Sep 20 2013