cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229327 Total sum of 5th powers of parts in all partitions of n.

This page as a plain text file.
%I A229327 #24 May 28 2018 02:52:01
%S A229327 0,1,34,279,1370,4775,14196,35745,83486,177120,358710,681316,1257414,
%T A229327 2212343,3811590,6344760,10381686,16534989,25994160,39973360,60802860,
%U A229327 90875412,134507694,196208405,283895550,405646460,575437476,807778980,1126478494,1556675935
%N A229327 Total sum of 5th powers of parts in all partitions of n.
%C A229327 The bivariate g.f. for the partition statistic "sum of 5th powers the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^5}*x^k). The g.f. g at the Formula section has been obtained by evaluating dG/dt at t=1. - _Emeric Deutsch_, Dec 06 2015
%H A229327 Alois P. Heinz, <a href="/A229327/b229327.txt">Table of n, a(n) for n = 0..1000</a>
%H A229327 Guo-Niu Han, <a href="https://arxiv.org/abs/0804.1849">An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths</a>, arXiv:0804.1849 [math.CO], 2008.
%F A229327 a(n) = Sum_{k=1..n} A066633(n,k) * k^5.
%F A229327 G.f.: g(x) = (Sum_{k>=1} k^5*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - _Emeric Deutsch_, Dec 06 2015
%F A229327 a(n) ~ 16*sqrt(3)/7 * exp(Pi*sqrt(2*n/3)) * n^2. - _Vaclav Kotesovec_, May 28 2018
%p A229327 b:= proc(n, i) option remember; `if`(n=0, [1, 0],
%p A229327       `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
%p A229327       ((g, h)-> g+h+[0, h[1]*i^5])(b(n, i-1), b(n-i, i)))))
%p A229327     end:
%p A229327 a:= n-> b(n, n)[2]:
%p A229327 seq(a(n), n=0..40);
%p A229327 # second Maple program:
%p A229327 g := (sum(k^5*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # _Emeric Deutsch_, Dec 06 2015
%t A229327 Table[Total[Flatten[IntegerPartitions[n]]^5],{n,0,30}] (* _Harvey P. Dale_, Jun 24 2014 *)
%t A229327 (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k<n := T[n, k] = T[n-k, k] + PartitionsP[n-k]; T[_, _] = 0; a[n_] := Sum[T[n, k]*k^5, {k, 1, n}]; Array[a, 45, 0] (* _Jean-François Alcover_, Dec 15 2016 *)
%Y A229327 Column k=5 of A213191.
%K A229327 nonn
%O A229327 0,3
%A A229327 _Alois P. Heinz_, Sep 20 2013