cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229328 Total sum of 6th powers of parts in all partitions of n.

This page as a plain text file.
%I A229328 #21 May 28 2018 02:53:02
%S A229328 0,1,66,797,5024,21447,73920,212951,552378,1292410,2838234,5823262,
%T A229328 11464628,21488403,39094986,68600554,117628414,196085189,321067770,
%U A229328 513857202,810429626,1254814258,1918760856,2889290459,4305268546,6331543700,9226796660,13297146272
%N A229328 Total sum of 6th powers of parts in all partitions of n.
%C A229328 The bivariate g.f. for the partition statistic "sum of 6th powers the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^6}*x^k). The g.f. g at the Formula section has been obtained by evaluating dG/dt at t=1. - _Emeric Deutsch_, Dec 06 2015
%H A229328 Alois P. Heinz, <a href="/A229328/b229328.txt">Table of n, a(n) for n = 0..1000</a>
%H A229328 Guo-Niu Han, <a href="https://arxiv.org/abs/0804.1849">An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths</a>, arXiv:0804.1849 [math.CO], 2008.
%F A229328 a(n) = Sum_{k=1..n} A066633(n,k) * k^6.
%F A229328 G.f.: g(x) = (Sum_{k>=1} k^6*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - _Emeric Deutsch_, Dec 06 2015
%F A229328 a(n) ~ 38880*sqrt(2)*Zeta(7)/Pi^7 * exp(Pi*sqrt(2*n/3)) * n^(5/2). - _Vaclav Kotesovec_, May 28 2018
%p A229328 b:= proc(n, i) option remember; `if`(n=0, [1, 0],
%p A229328       `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
%p A229328       ((g, h)-> g+h+[0, h[1]*i^6])(b(n, i-1), b(n-i, i)))))
%p A229328     end:
%p A229328 a:= n-> b(n, n)[2]:
%p A229328 seq(a(n), n=0..40);
%p A229328 # second Maple program:
%p A229328 g := (sum(k^6*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # _Emeric Deutsch_, Dec 06 2015
%t A229328 (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k < n := T[n, k] = T[n - k, k] + PartitionsP[n - k]; T[_, _] = 0; a[n_] := Sum[T[n, k]*k^6, {k, 1, n}]; Array[a, 40, 0] (* _Jean-François Alcover_, Dec 15 2016 *)
%Y A229328 Column k=6 of A213191.
%K A229328 nonn
%O A229328 0,3
%A A229328 _Alois P. Heinz_, Sep 20 2013