cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229330 Total sum of 8th powers of parts in all partitions of n.

This page as a plain text file.
%I A229330 #21 May 28 2018 02:54:53
%S A229330 0,1,258,6821,72872,470319,2229624,8464487,27530298,78974938,
%T A229330 206418978,497450302,1126668140,2410089243,4930872330,9670306930,
%U A229330 18336637198,33650085029,60146112858,104730757818,178524931538,297898015114,488407670832,786658901771
%N A229330 Total sum of 8th powers of parts in all partitions of n.
%C A229330 The bivariate g.f. for the partition statistic "sum of 8th powers of the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^8}*x^k). The g.f. g at the Formula section has been obtained by evaluating dG/dt at t=1. - _Emeric Deutsch_, Dec 06 2015
%H A229330 Alois P. Heinz, <a href="/A229330/b229330.txt">Table of n, a(n) for n = 0..1000</a>
%H A229330 Guo-Niu Han, <a href="https://arxiv.org/abs/0804.1849">An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths</a>, arXiv:0804.1849 [math.CO], 2008.
%F A229330 a(n) = Sum_{k=1..n} A066633(n,k) * k^8.
%F A229330 G.f.: g(x) = (Sum_{k>=1} k^8*x^k/(1-x^k))/Product_{q>=1}(1-x^q). - _Emeric Deutsch_, Dec 06 2015
%F A229330 a(n) ~ 13063680*sqrt(2)*Zeta(9)/Pi^9 * exp(Pi*sqrt(2*n/3)) * n^(7/2). - _Vaclav Kotesovec_, May 28 2018
%p A229330 b:= proc(n, i) option remember; `if`(n=0, [1, 0],
%p A229330       `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
%p A229330       ((g, h)-> g+h+[0, h[1]*i^8])(b(n, i-1), b(n-i, i)))))
%p A229330     end:
%p A229330 a:= n-> b(n, n)[2]:
%p A229330 seq(a(n), n=0..40);
%p A229330 # second Maple program:
%p A229330 g := (sum(k^8*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # _Emeric Deutsch_, Dec 06 2015
%t A229330 (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k < n := T[n, k] = T[n - k, k] + PartitionsP[n - k]; T[_, _] = 0; a[n_] := Sum[T[n, k]*k^8, {k, 1, n}]; Array[a, 40, 0] (* _Jean-François Alcover_, Dec 15 2016 *)
%Y A229330 Column k=8 of A213191.
%K A229330 nonn
%O A229330 0,3
%A A229330 _Alois P. Heinz_, Sep 20 2013