cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229332 Total sum of 10th powers of parts in all partitions of n.

This page as a plain text file.
%I A229332 #23 May 28 2018 02:58:26
%S A229332 0,1,1026,60077,1110704,10936407,72573360,365983991,1513288698,
%T A229332 5365004410,16877063274,48105808222,126584890148,310963328163,
%U A229332 721354362186,1590587613754,3359058693214,6822189191429,13396265918970,25501949210562,47248199227946,85355336473378
%N A229332 Total sum of 10th powers of parts in all partitions of n.
%C A229332 The bivariate g.f. for the partition statistic "sum of 10th powers of the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^10}*x^k). The g.f. g given in the Formula section was obtained by evaluating dG/dt at t=1. - _Emeric Deutsch_, Dec 06 2015
%C A229332 In general, column k>0 of A213191 is asymptotic to 2^((k-3)/2) * 3^(k/2) * k! * Zeta(k+1) / Pi^(k+1) * exp(Pi*sqrt(2*n/3)) * n^((k-1)/2). - _Vaclav Kotesovec_, May 28 2018
%H A229332 Alois P. Heinz, <a href="/A229332/b229332.txt">Table of n, a(n) for n = 0..1000</a>
%H A229332 Guo-Niu Han, <a href="https://arxiv.org/abs/0804.1849">An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths</a>, arXiv:0804.1849 [math.CO], 2008.
%F A229332 a(n) = Sum_{j=k..n} A066633(n,k) * k^10.
%F A229332 G.f.: g(x) = (Sum_{k>=1} k^10*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - _Emeric Deutsch_, Dec 06 2015
%F A229332 a(n) ~ 7054387200*sqrt(2)*Zeta(11)/Pi^11 * exp(Pi*sqrt(2*n/3)) * n^(9/2). - _Vaclav Kotesovec_, May 28 2018
%p A229332 b:= proc(n, i) option remember; `if`(n=0, [1, 0],
%p A229332       `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
%p A229332       ((g, h)-> g+h+[0, h[1]*i^10])(b(n, i-1), b(n-i, i)))))
%p A229332     end:
%p A229332 a:= n-> b(n, n)[2]:
%p A229332 seq(a(n), n=0..40);
%p A229332 # second Maple program:
%p A229332 g := (sum(k^10*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # _Emeric Deutsch_, Dec 06 2015
%t A229332 (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k < n := T[n, k] = T[n - k, k] + PartitionsP[n - k]; T[_, _] = 0; a[n_] := Sum[T[n, k]*k^10, {k, 1, n}]; Array[a, 40, 0] (* _Jean-François Alcover_, Dec 15 2016 *)
%Y A229332 Column k=10 of A213191.
%K A229332 nonn
%O A229332 0,3
%A A229332 _Alois P. Heinz_, Sep 20 2013