cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229334 Product of numbers of elements of nonempty subsets of divisors of n.

This page as a plain text file.
%I A229334 #7 Dec 11 2015 22:04:33
%S A229334 1,2,2,24,2,20736,2,20736,24,20736,2,11501279977342425366528000000,2,
%T A229334 20736,20736,309586821120,2,11501279977342425366528000000,2,
%U A229334 11501279977342425366528000000,20736,20736,2
%N A229334 Product of numbers of elements of nonempty subsets of divisors of n.
%C A229334 Number of nonempty subsets of divisors of n = A100587(n).
%C A229334 Also product of sizes of all the subsets of set of divisors of n.
%F A229334 a(n) = product[k=1..tau(n)] k^C(tau(n),k) = product[k=1..tau(n)] k^(tau(n)!/((tau(n)-k)!*k!)).
%e A229334 For n = 4; divisors of 4: {1, 2, 4}; nonempty subsets of divisors of n: {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}; product of numbers of elements of subsets = 1*1*1*2*2*2*3 = 24.
%e A229334 For n = 4; tau(4) = 3; a(4) = [1^(3!/((3-1)!*1!))] * [2^(3!/((3-2)!*2!))] * [3^(3!/((3-3)!*3!))] = 1^3 * 2^3 * 3^1 = 24.
%t A229334 Table[Times @@ Rest[Length /@ Subsets[Divisors[n]]], {n, 23}] (* _T. D. Noe_, Oct 01 2013 *)
%Y A229334 Cf. A000005, A100587, A229333.
%K A229334 nonn
%O A229334 1,2
%A A229334 _Jaroslav Krizek_, Sep 30 2013