cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229335 Sum of sums of elements of subsets of divisors of n.

This page as a plain text file.
%I A229335 #10 Nov 10 2017 16:55:52
%S A229335 1,6,8,28,12,96,16,120,52,144,24,896,28,192,192,496,36,1248,40,1344,
%T A229335 256,288,48,7680,124,336,320,1792,60,9216,64,2016,384,432,384,23296,
%U A229335 76,480,448,11520,84,12288,88,2688,2496,576,96,63488,228,2976,576,3136,108
%N A229335 Sum of sums of elements of subsets of divisors of n.
%C A229335 Number of nonempty subsets of divisors of n = A100587(n).
%H A229335 Jaroslav Krizek, <a href="/A229335/b229335.txt">Table of n, a(n) for n = 1..1000</a>
%F A229335 a(n) = A000203(n) * A100577(n) = A000203(n) * (A100587(n) + 1) / 2 = A000203(n) * 2^(A000005(n) - 1) = sigma(n) * 2^(tau(n) - 1).
%F A229335 a(2^n)  = (2^(n+1) - 1) * 2^n.
%e A229335 For n = 2^2 = 4; divisors of 4: {1, 2, 4}; nonempty subsets of divisors of n: {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}; sum of sums of elements of subsets = 1 + 2 + 4 + 3 + 5 + 6 + 7 = 28 = (2^3-1) * 2^2 = 7 * 4.
%p A229335 A229335 := proc(n)
%p A229335     numtheory[sigma](n)*A100577(n) ;
%p A229335 end proc:
%p A229335 seq(A229335(n),n=1..100) ; # _R. J. Mathar_, Nov 10 2017
%t A229335 Table[Total[Flatten[Subsets[Divisors[n]]]], {n, 100}] (* _T. D. Noe_, Sep 21 2013 *)
%Y A229335 Cf. A229336 (product of sums of elements of subsets of divisors of n).
%Y A229335 Cf. A229337 (sum of products of elements of subsets of divisors of n).
%Y A229335 Cf. A229338 (product of products of elements of subsets of divisors of n).
%K A229335 nonn
%O A229335 1,2
%A A229335 _Jaroslav Krizek_, Sep 20 2013