A229376 Number of nX4 0..2 arrays avoiding 11 horizontally, 22 vertically and 00 diagonally or antidiagonally.
60, 518, 6730, 78690, 956866, 11441370, 138118032, 1657198220, 19969628086, 239888727922, 2888372417962, 34717775838484, 417835837510270, 5023955278338394, 60449751205860716, 726964181424486002
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0..0..1....1..2..2..1....2..2..2..1....2..0..1..2....0..0..1..2 ..2..1..2..2....0..0..1..0....1..0..0..1....1..2..1..0....2..2..2..0 ..0..1..0..1....1..2..1..0....2..2..2..1....1..0..1..0....1..0..1..0 ..2..1..2..2....0..0..2..0....0..0..1..2....1..0..2..1....1..0..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 6*a(n-1) +150*a(n-2) -614*a(n-3) -6021*a(n-4) +20473*a(n-5) +101559*a(n-6) -313078*a(n-7) -812145*a(n-8) +2419449*a(n-9) +3153273*a(n-10) -9572428*a(n-11) -6094709*a(n-12) +19880682*a(n-13) +5584682*a(n-14) -21686564*a(n-15) -1854284*a(n-16) +12002158*a(n-17) -190196*a(n-18) -3154524*a(n-19) +224356*a(n-20) +344336*a(n-21) -35568*a(n-22) -12480*a(n-23) +1536*a(n-24) for n>25
Comments