cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229384 Positive integer solutions y1, x1, y2, x2 to Ljunggren's equation x^2 + 1 = 2y^4.

This page as a plain text file.
%I A229384 #14 Sep 30 2013 17:32:27
%S A229384 1,1,13,239
%N A229384 Positive integer solutions y1, x1, y2, x2 to Ljunggren's equation x^2 + 1 = 2y^4.
%C A229384 See the Wikipedia links for other references.
%C A229384 The only square stella octangula numbers are A007588(1) = (a(1)*a(2))^2 = 1 and A007588(169) = (a(3)*a(4))^2 = 9653449.
%D A229384 W. Ljunggren, Zur Theorie der Gleichung x^2 + 1 = Dy^4, Avh. Norske Vid. Akad. Oslo. I. 1942 (5): 27.
%H A229384 Wikipedia, <a href="https://en.wikipedia.org/wiki/Stella_octangula_number">Stella octangula number</a>
%H A229384 Wikipedia, <a href="https://en.wikipedia.org/wiki/Wilhelm_Ljunggren">Wilhelm Ljunggren</a>
%e A229384 239^2 + 1 = 57122 = 2*13^4.
%Y A229384 Cf. A007588.
%K A229384 nonn,fini,full
%O A229384 1,3
%A A229384 _Jonathan Sondow_, Sep 30 2013