cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229392 T(n,k)=Number of nXk 0..3 arrays of the sum of the corresponding element, the element to the east and the element to the south in a larger (n+1)X(k+1) 0..1 array.

Original entry on oeis.org

4, 14, 14, 48, 128, 48, 164, 1064, 1064, 164, 560, 8592, 19124, 8592, 560, 1912, 68672, 319340, 319340, 68672, 1912, 6528, 546752, 5212236, 10624396, 5212236, 546752, 6528, 22288, 4346752, 84210828, 345788172, 345788172, 84210828, 4346752, 22288
Offset: 1

Views

Author

R. H. Hardin Sep 21 2013

Keywords

Comments

Table starts
.....4........14...........48.............164................560
....14.......128.........1064............8592..............68672
....48......1064........19124..........319340............5212236
...164......8592.......319340........10624396..........345788172
...560.....68672......5212236.......345788172........22494002188
..1912....546752.....84210828.....11156280332......1451228983308
..6528...4346752...1353901580....358453456908.....93250181644300
.22288..34537984..21715025932..11493734735884...5979900142878732
.76096.274370048.347864379404.368171037655052.383094040360124428

Examples

			Some solutions for n=3 k=4
..1..1..0..1....1..1..1..3....0..1..1..2....0..1..2..3....0..0..2..1
..0..0..1..0....3..2..1..2....2..1..0..0....2..2..2..2....0..1..2..1
..1..2..2..1....3..1..2..3....2..1..0..1....2..0..2..3....0..1..2..3
		

Crossrefs

Column 1 is A007070

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -2*a(n-2)
k=2: a(n) = 12*a(n-1) -36*a(n-2) +32*a(n-3) -16*a(n-4)
k=3: a(n) = 25*a(n-1) -152*a(n-2) +144*a(n-3) -368*a(n-4) +1888*a(n-5) -1536*a(n-6) for n>9
k=4: a(n) = 49*a(n-1) -560*a(n-2) +544*a(n-3) -1568*a(n-4) +17920*a(n-5) -16384*a(n-6) for n>9
k=5: a(n) = 101*a(n-1) -2532*a(n-2) +10624*a(n-3) -8192*a(n-4) for n>7
k=6: a(n) = 193*a(n-1) -8384*a(n-2) +8320*a(n-3) -24704*a(n-4) +1073152*a(n-5) -1048576*a(n-6) for n>9
k=7: a(n) = 385*a(n-1) -33152*a(n-2) +33024*a(n-3) -98560*a(n-4) +8486912*a(n-5) -8388608*a(n-6) for n>9
k=8: a(n) = 777*a(n-1) -137992*a(n-2) +1185792*a(n-3) -1048576*a(n-4) for n>7
k=9: a(n) = 1537*a(n-1) -525824*a(n-2) +525312*a(n-3) -1573888*a(n-4) +538443776*a(n-5) -536870912*a(n-6) for n>9
k=10: a(n) = 3073*a(n-1) -2100224*a(n-2) +2099200*a(n-3) -6293504*a(n-4) +4301258752*a(n-5) -4294967296*a(n-6) for n>9
k=11: a(n) = 6161*a(n-1) -8493072*a(n-2) +142704640*a(n-3) -134217728*a(n-4) for n>7