A229423 Number of n X 3 0..2 arrays with horizontal differences mod 3 never 1, vertical differences mod 3 never -1, rows lexicographically nondecreasing, and columns lexicographically nonincreasing.
8, 27, 83, 222, 524, 1116, 2187, 4005, 6936, 11465, 18219, 27992, 41772, 60770, 86451, 120567, 165192, 222759, 296099, 388482, 503660, 645912, 820091, 1031673, 1286808, 1592373, 1956027, 2386268, 2892492, 3485054, 4175331, 4975787, 5900040, 6962931
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0..0....1..1..0....0..0..0....1..1..1....1..0..0....0..0..0....1..0..0 ..2..1..1....2..1..0....1..1..0....1..1..1....2..1..1....1..1..0....2..1..0 ..2..1..1....2..2..1....1..1..1....1..1..1....2..2..1....1..1..0....2..1..1 ..2..2..1....2..2..1....1..1..1....1..1..1....2..2..2....1..1..1....2..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A229428.
Formula
Empirical: a(n) = (1/360)*n^6 + (1/20)*n^5 + (5/18)*n^4 + (2/3)*n^3 + (799/360)*n^2 + (107/60)*n + 3.
Conjectures from Colin Barker, Sep 15 2018: (Start)
G.f.: x*(8 - 29*x + 62*x^2 - 72*x^3 + 48*x^4 - 18*x^5 + 3*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)