A229426 Number of n X 6 0..2 arrays with horizontal differences mod 3 never 1, vertical differences mod 3 never -1, rows lexicographically nondecreasing, and columns lexicographically nonincreasing.
23, 175, 1116, 5700, 24126, 87648, 281016, 812352, 2152643, 5297329, 12231874, 26724490, 55625600, 110928984, 212948248, 395089316, 710860767, 1243965435, 2122565928, 3539121568, 5777563514, 9250018192, 14545817232, 22496156480
Offset: 1
Keywords
Examples
Some solutions for n=4 ..2..2..1..0..0..0....1..0..0..0..0..0....2..2..1..1..1..0....2..2..2..1..1..1 ..2..2..1..1..1..0....2..1..0..0..0..0....2..2..1..1..1..0....2..2..2..1..1..1 ..2..2..1..1..1..0....2..1..0..0..0..0....2..2..2..1..1..0....2..2..2..1..1..1 ..2..2..2..1..1..0....2..2..1..1..0..0....2..2..2..1..1..0....2..2..2..2..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A229428.
Formula
Empirical: a(n) = (1/11404800)*n^12 + (1/211200)*n^11 + (37/345600)*n^10 + (143/103680)*n^9 + (27977/2419200)*n^8 + (83399/1209600)*n^7 + (321133/1036800)*n^6 + (35291/34560)*n^5 + (66941/28800)*n^4 + (614843/129600)*n^3 + (149511/30800)*n^2 + (19627/3465)*n + 4.
Comments